• Borys, R. D., D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., H. Pawlowska, and L. J. Schuller, 2003: Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate. J. Geophys. Res., 108, 8632, doi:10.1029/2002JD002682.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and A. V. Korolev, 2001a: Assessing the Rosemount Icing Detector with in situ measurements. J. Atmos. Oceanic Technol., 18, 515528.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, A. V. Korolev, and J. W. Strapp, 2001b: Assessing cloud-phase conditions. J. Appl. Meteor., 40, 19671983.

  • Cooper, W. A., 1977: Cloud physics investigation by the University of Wyoming in HIPLEX 1977. Bureau of Reclamation Rep. AS 199, 321 pp.

  • Cotton, R., S. Osborne, Z. Ulanowski, E. Hirst, P. H. Kaye, and R. S. Greenaway, 2010: The ability of the Small Ice Detector (SID-2) to characterize cloud particle and aerosol morphologies obtained during flights of the FAAM BAe-146 research aircraft. J. Atmos. Oceanic Technol., 27, 290303.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., 1995: Interactions among aerosols, clouds, and climate of the Arctic Ocean. Sci. Total Environ., 160, 777791.

  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and G. G. Mace, 2003: Arctic stratus cloud properties and radiative forcing derived from ground-based data collected at Barrow, Alaska. J. Climate, 16, 445461.

    • Search Google Scholar
    • Export Citation
  • Dong, X., G. G. Mace, P. Minnis, and D. F. Young, 2001: Arctic stratus cloud properties and their effect on the surface radiation budget: Selected cases from FIRE ACE. J. Geophys. Res., 106, 15 29715 312.

    • Search Google Scholar
    • Export Citation
  • Earle, M. E., P. S. K. Liu, J. W. Strapp, A. Zelenyuk, D. Imre, G. M. McFarquhar, N. C. Shantz, and W. R. Leaitch, 2011: Factors influencing the microphysics and radiative properties of liquid-dominant Arctic clouds: Insight from observations of aerosol and clouds during ISDAC. J. Geophys. Res., 116, D00T09, doi:10.1029/2011JD015887.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249261.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, P. H. Kaye, E. Hirst, and R. Greenaway, 2004: Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m scale. Quart. J. Roy. Meteor. Soc., 130, 18771904.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371.

    • Search Google Scholar
    • Export Citation
  • Fleishauer, R. P., V. E. Larson, and T. H. Vonder Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59, 17791804.

    • Search Google Scholar
    • Export Citation
  • Gayet, J. F., G. Febvre, and H. Larsen, 1996: The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol., 13, 13001310.

    • Search Google Scholar
    • Export Citation
  • Gayet, J. F., O. Crepal, J. F. Fournol, and S. Oshchepkov, 1997: A new airborne nephelometer for measurements of optical and microphysical cloud properties. Part I: Theoretical design. Ann. Geophys., 15, 451459.

    • Search Google Scholar
    • Export Citation
  • Girard, E., J. P. Blanchet, and Y. Dubois, 2005: Effects of Arctic sulphuric acid aerosols on wintertime low-level atmospheric ice crystals, humidity and temperature at Alert, Nunavut. Atmos. Res., 73, 131148.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465497.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., and P. Q. Olsson, 2001: On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics. J. Geophys. Res., 106, 27 47327 484.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 51, 4575.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and G. M. McFarquhar, 2002: Mid-latitude and tropical cirrus microphysical properties. Cirrus, D. Lynch, Ed., Optical Society of America, 78–101.

  • Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. L Andreas, P. S. Guest, and R. E. Moritz, 2002a: An annual cycle of Arctic surface cloud at SHEBA. J. Geophys. Res., 107, 8039, doi:10.1029/2000JC000439.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002b: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and Coauthors, 2012: The dependence of ice microphysics on aerosol concentration in Arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57, 21052117.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808.

  • Korolev, A. V., and G. A. Isaac, 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528542.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 3965.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and E. Emery, 2008: Improved airborne hot-wire measurements of ice water content in clouds. Preprints, 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, ICCP, P13.4.

  • Korolev, A. V., E. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381.

  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, doi:10.1029/2000JD900789.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29, 1052, doi:10.1029/2001GL014357.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus. J. Atmos. Sci., 51, 18231842.

    • Search Google Scholar
    • Export Citation
  • Mazin, I. P., A. V. Korolev, A. Heymsfield, G. A. Isaac, and S. G. Cober, 2001: Thermodynamics of icing cylinder for measurements of liquid water content in supercooled clouds. J. Atmos. Oceanic Technol., 18, 543558.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three cirrus anvils sampled during the Central Equatorial Pacific Experiment (CEPEX). J. Atmos. Sci., 53, 24012423.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and S. G. Cober, 2004: Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer. J. Climate, 17, 37993813.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999: Use of observed ice crystal sizes and shapes to calculate mean-scattering properties and multispectral radiances: CEPEX April 4, 1993, case study. J. Geophys. Res., 104, 31 76331 779.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007a: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007b: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112, D24201, doi:10.1029/2007JD008633.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2011: Indirect and Semi-Direct Aerosol Campaign (ISDAC): The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, and J. A. Curry, 2003: Modeling clouds observed at SHEBA using a bulk microphysics parameterization implemented into a single-column model. J. Geophys. Res., 108, 4255, doi:10.1029/2002JD002229.

    • Search Google Scholar
    • Export Citation
  • Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci., 61, 22292248.

  • Peng, Y., U. Lohmann, W. R. Leaitch, C. Banic, and M. Couture, 2002: The cloud albedo–cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE. J. Geophys. Res., 107, 4106, doi:10.1029/2000JD000281.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phased cloudy boundary layers in the Arctic. J. Atmos. Sci., 55, 20162038.

  • Rangno, A. L., and P. V. Hobbs, 2001: Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res., 106, 15 06515 075.

    • Search Google Scholar
    • Export Citation
  • Shcherbakov, V., J.-F. Gayet, O. Jourdan, J. Strom, and A. Minikin, 2006: Light scattering by single ice crystals of cirrus clouds. Geophys. Res. Lett., 33, L15809, doi:10.1029/2006GL026055.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2011: Clouds at Arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. J. Appl. Meteor. Climatol., 50, 645661.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, S. Matrosov, and A. S. Frisch, 2001: Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment. J. Geophys. Res., 106, 15 01515 028.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., and K. P. Shine, 1994: Studies of the radiative properties of ice and mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 120, 111137.

    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 31593171.

    • Search Google Scholar
    • Export Citation
  • Um, J., G. M. McFarquhar, P. Connolly, C. Emersic, J. Z. Ulanowski, and M. Gallagher, 2012: Calibration of three generations of Cloud Particle Imagers (CPIs) to improve measurements of particle size distributions. Preprints, 16th Int. Conf. on Clouds and Precipitation, Leipzig, Germany, ICCP, 12.1.2.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205221.

  • Zuidema, P., and Coauthors, 2005: An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA. J. Atmos. Sci., 62, 160176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 134 14
PDF Downloads 199 111 28

Small Cloud Particle Shapes in Mixed-Phase Clouds

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
Restricted access

Abstract

The shapes of cloud particles with maximum dimensions Dmax between 35 and 60 μm in mixed-phase clouds were studied using high-resolution particle images collected by a cloud particle imager (CPI) during the Mixed-Phase Arctic Cloud Experiment (M-PACE) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC). The area ratio α, the projected area of a particle divided by the area of a circle with diameter Dmax, quantified particle shape. The differing optical characteristics of CPIs used in M-PACE and ISDAC had no effect on derived α provided that Dmax > 35 μm and CPI focus > 45. The fraction of particles with 35 < Dmax < 60 μm with α > 0.8 increased with the ratio of liquid water content (LWC) to total water content (TWC). The average αmean of small particles in each 10-s interval in mixed-phase clouds was correlated with LWC/TWC with a correlation coefficient of 0.60 for M-PACE and 0.43 for ISDAC. The stronger correlation seen during M-PACE was most likely associated with the presence of more liquid droplets that were larger than the CPI detection threshold contributing to αmean; the modal effective radius was larger (11 vs 6 μm), and drops with D > 35 μm had concentrations during M-PACE that were 6 times as large as those of ISDAC. This study hence suggests that area ratio can be used to identify the phase of particles with 35 < Dmax < 60 μm and questions the assumption used in previous studies that all particles in this size range are supercooled droplets.

Corresponding author address: Prof. Greg McFarquhar, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory Street, MC 223, Urbana, IL 61801. E-mail: mcfarq@atmos.uiuc.edu

Abstract

The shapes of cloud particles with maximum dimensions Dmax between 35 and 60 μm in mixed-phase clouds were studied using high-resolution particle images collected by a cloud particle imager (CPI) during the Mixed-Phase Arctic Cloud Experiment (M-PACE) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC). The area ratio α, the projected area of a particle divided by the area of a circle with diameter Dmax, quantified particle shape. The differing optical characteristics of CPIs used in M-PACE and ISDAC had no effect on derived α provided that Dmax > 35 μm and CPI focus > 45. The fraction of particles with 35 < Dmax < 60 μm with α > 0.8 increased with the ratio of liquid water content (LWC) to total water content (TWC). The average αmean of small particles in each 10-s interval in mixed-phase clouds was correlated with LWC/TWC with a correlation coefficient of 0.60 for M-PACE and 0.43 for ISDAC. The stronger correlation seen during M-PACE was most likely associated with the presence of more liquid droplets that were larger than the CPI detection threshold contributing to αmean; the modal effective radius was larger (11 vs 6 μm), and drops with D > 35 μm had concentrations during M-PACE that were 6 times as large as those of ISDAC. This study hence suggests that area ratio can be used to identify the phase of particles with 35 < Dmax < 60 μm and questions the assumption used in previous studies that all particles in this size range are supercooled droplets.

Corresponding author address: Prof. Greg McFarquhar, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory Street, MC 223, Urbana, IL 61801. E-mail: mcfarq@atmos.uiuc.edu
Save