• Ashcroft, M. B., K. O. French, and L. A. Chisholm, 2011: An evaluation of environmental factors affecting species distributions. Ecol. Modell., 222, 524531.

    • Search Google Scholar
    • Export Citation
  • Åström, M., M. Dynesius, K. Hylander, and C. Nilsson, 2007: Slope aspect modifies community responses to clear-cutting in boreal forests. Ecology, 88, 749758.

    • Search Google Scholar
    • Export Citation
  • Blandford, T., and K. Humes, 2008: Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin. J. Appl. Meteor. Climatol., 47, 249261.

    • Search Google Scholar
    • Export Citation
  • Bristow, K., and G. Campbell, 1984: On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteor., 31, 159166.

    • Search Google Scholar
    • Export Citation
  • Broxton, P. D., P. A. Troch, and S. W. Lyon, 2009: On the role of aspect to quantify water transit times in small mountainous catchments. Water Resour. Res., 45, W08427, doi:10.1029/2008WR007438.

    • Search Google Scholar
    • Export Citation
  • Chen, D., L. Gong, C.-Y. Xu, and S. Halldin, 2007: A high-resolution, gridded dataset for monthly temperature normals (1971–2000) in Sweden. Geogr. Ann., 89A, 249261.

    • Search Google Scholar
    • Export Citation
  • Chung, U., and J. Yun, 2004: Solar irradiance-corrected spatial interpolation of hourly temperature in complex terrain. Agric. For. Meteor., 126, 129139.

    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473.

    • Search Google Scholar
    • Export Citation
  • Daly, C., and D. Conklin, 2010: Local atmospheric decoupling in complex topography alters climate change impacts. Int. J. Climate, 30, 18571864.

    • Search Google Scholar
    • Export Citation
  • Dobrowski, S. Z., 2011: A climatic basis for microrefugia: The influence of terrain on climate. Global Change Biol., 17, 10221035.

  • Dobrowski, S. Z., J. T. Abatzoglou, J. Greenberg, and S. Schladow, 2009: How much influence does landscape-scale physiography have on air temperature in a mountain environment? Agric. For. Meteor., 149, 17511758.

    • Search Google Scholar
    • Export Citation
  • Dubayah, R., and P. M. Rich, 1995: Topographic solar radiation models for GIS. Int. J. Geogr. Inf. Syst., 9, 405–419.

  • ESRI, cited 2012: Area solar radiation. [Available online at http://webhelp.esri.com/arcgiSDEsktop/9.3/index.cfm?TopicName=Area_Solar_Radiation.]

  • Fridley, J. D., 2009: Downscaling climate over complex terrain: High finescale (<1000 m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). J. Appl. Meteor. Climatol., 48, 10331049.

    • Search Google Scholar
    • Export Citation
  • Fu, P., and P. Rich, 1999a: Design and implementation of the solar analyst: An ArcView extension for modeling solar radiation at landscape scales. Proc. 19th Annual ESRI User Conf., San Diego, CA, ESRI. [Available online at http://proceedings.esri.com/library/userconf/proc99/proceed/papers/pap867/p867.htm.]

  • Fu, P., and P. Rich, 1999b: TopoView, Version 1.0 Manual. Helios Environmental Modeling Institute, 52 pp.

  • Fu, P., and P. Rich, 2002: A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric., 37, 2535.

    • Search Google Scholar
    • Export Citation
  • Gaston, K. J., 2003: The Structure and Dynamics of Geographic Ranges. Oxford University Press, 280 pp.

  • Geerts, B., 2003: Empirical estimation of the monthly-mean daily temperature range. Theor. Appl. Climatol., 74, 145165.

  • Geiger, R., 1965: The Climate Near the Ground. 4th ed. Harvard University Press, 611 pp.

  • Hampe, A., and A. S. Jump, 2011: Climate relicts: Past, present, future. Annu. Rev. Ecol. Evol. Syst., 42, 313333.

  • Higley, L. G., L. P. Pedigo, and K. R. Ostlie, 1986: DEGDAY: A program for calculating degree-days, and assumptions behind the degree-day approach. Environ. Entomol., 15, 9991018.

    • Search Google Scholar
    • Export Citation
  • Hock, R., 2003: Temperature index melt modelling in mountain areas. J. Hydrol., 282, 104115.

  • Holdaway, M., 1996: Spatial modeling and interpolation of monthly temperature using kriging. Climate Res., 6, 215225.

  • Holden, Z. A., J. T. Abatzoglou, C. H. Luce, and L. S. Baggett, 2011: Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain. Agric. For. Meteor., 151, 10661073.

    • Search Google Scholar
    • Export Citation
  • Huang, S., P. M. Rich, R. L. Crabtree, C. S. Potter, and P. Fu, 2008: Modeling monthly near-surface air temperature from solar radiation and lapse rate: Application over complex terrain in Yellowstone National Park. Phys. Geogr., 29, 158178.

    • Search Google Scholar
    • Export Citation
  • Hubbart, J., T. Link, C. Campbell, and D. Cobos, 2005: Evaluation of a low-cost temperature measurement system for environmental applications. Hydrol. Processes, 19, 15171523.

    • Search Google Scholar
    • Export Citation
  • Huwald, H., C. W. Higgins, M.-O. Boldi, E. Bou-Zeid, M. Lehning, and M. B. Parlange, 2009: Albedo effect on radiative errors in air temperature measurements. Water Resour. Res., 45, W08431, doi:10.1029/2008WR007600.

    • Search Google Scholar
    • Export Citation
  • Kirschbaum, M. U. F., 2004: Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol., 6, 242253.

  • Lundquist, J. D., and B. Huggett, 2008: Evergreen trees as inexpensive radiation shields for temperature sensors. Water Resour. Res., 44, W00D04, doi:10.1029/2008WR006979.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., N. Pepin, and C. Rochford, 2008: Automated algorithm for mapping regions of cold-air pooling in complex terrain. J. Geophys. Res., 113, D22107, doi:10.1029/2008JD009879.

    • Search Google Scholar
    • Export Citation
  • Lyon, S. W., P. A. Troch, P. D. Broxton, N. P. Molotch, and P. D. Brooks, 2008: Monitoring the timing of snowmelt and the initiation of streamflow using a distributed network of temperature/light sensors. Ecohydrology, 1, 215224.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2006: Variation of surface air temperature in complex terrain. J. Appl. Meteor. Climatol., 45, 14811493.

  • Makowski, K., E. B. Jaeger, M. Chiacchio, M. Wild, T. Ewen, and A. Ohmura, 2009: On the relationship between diurnal temperature range and surface solar radiation in Europe. J. Geophys. Res., 114, D00D07, doi:10.1029/2008JD011104.

    • Search Google Scholar
    • Export Citation
  • Mclaughlin, B. C., and E. S. Zavaleta, 2012: Predicting species responses to climate change: Demography and climate microrefugia in California Valley oak (Quercus lobata). Global Change Biol., 18, 23012312.

    • Search Google Scholar
    • Export Citation
  • McMaster, G. S., and W. W. Wilhelm, 1997: Growing degree-days: One equation, two interpretations. Agric. For. Meteor., 87, 291300.

  • Minder, J. R., P. W. Mote, and J. D. Lundquist, 2010: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res., 115, D14122, doi:10.1029/2009JD013493.

    • Search Google Scholar
    • Export Citation
  • Oke, T., 1987: Boundary Layer Climates. 2nd ed. Routledge, 464 pp.

  • Pepin, N. C., M. K. Schaefer, and L. D. Riddy, 2009: Quantification of the cold-air pool in Kevo Valley, Finnish Lapland. Weather, 64, 6067.

    • Search Google Scholar
    • Export Citation
  • Pierce, K. B., Jr., T. Lookingbill, and D. Urban, 2005: A simple method for estimating Potential Relative Radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecol., 20, 137147.

    • Search Google Scholar
    • Export Citation
  • Pike, G., N. C. Pepin, and M. Schaefer, 2013: High latitude local scale temperature complexity: The example of Kevo Valley, Finnish Lapland. Int. J. Climatol., doi:10.1002/joc.3573, in press.

    • Search Google Scholar
    • Export Citation
  • Simoni, S., and Coauthors, 2011: Hydrologic response of an alpine watershed: Application of a meteorological wireless sensor network to understand streamflow generation. Water Resour. Res., 47, W10524, doi:10.1029/2011WR010730.

    • Search Google Scholar
    • Export Citation
  • Söderström, L., 1981: Distribution of bryophytes in spruce forests on hill slopes in central Sweden. Wahlenbergia Scr. Bot. Umensia, 7, 141153.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. 1st ed. Springer, 684 pp.

  • Thompson, K., J. P. Grime, and G. Mason, 1977: Seed germination in response to diurnal fluctuations of temperature. Nature, 267, 147149.

    • Search Google Scholar
    • Export Citation
  • Thuiller, W., M. B. Araujo, and S. Lavorel, 2004: Do we need land-cover data to model species distributions in Europe? J. Biogeogr., 31, 353361.

    • Search Google Scholar
    • Export Citation
  • Tietäväinen, H., and H. Tuomenvirta, 2010: Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int. J. Climatol., 30, 22472256.

    • Search Google Scholar
    • Export Citation
  • Trivedi, M. R., P. M. Berry, M. D. Morecroft, and T. P. Dawson, 2008: Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biol., 14, 10891103.

    • Search Google Scholar
    • Export Citation
  • Vajda, A., and A. Venäläinen, 2003: The influence of natural conditions on the spatial variation of climate in Lapland, northern Finland. Int. J. Climatol., 23, 10111022.

    • Search Google Scholar
    • Export Citation
  • Virtanen, T., S. Neuvonen, and A. Nikula, 1998: Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with a geographical information system: Predictions for current climate and warmer climate scenarios. J. Appl. Ecol., 35, 311322.

    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Koike, and B. Ye, 2006: Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric. For. Meteor., 137, 4355.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., E. Hanna, and T. V. Callaghan, 2011: Modelling surface-air temperature variation over complex terrain around Abisko, Swedish Lapland: Uncertainties of measurements and models at different scales. Geogr. Ann., 93A, 89112.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 77 9
PDF Downloads 79 58 24

Fine-Resolved, Near-Coastal Spatiotemporal Variation of Temperature in Response to Insolation

View More View Less
  • 1 Department of Physical Geography and Quaternary Geology, and Bert Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden
  • | 2 Department of Botany, Stockholm University, Stockholm, Sweden
Restricted access

Abstract

This study uses GIS-based modeling of incoming solar radiation to quantify fine-resolved spatiotemporal responses of monthly average temperature, and diurnal temperature variation, at different times and locations within a field study area located on the eastern coast of Sweden. Near-surface temperatures are measured by a network of temperature sensors during the spring and summer of 2011 and then used as the basis for model development and testing. The modeling of finescale spatiotemporal variation considers topography, distance from the sea, and observed variations in atmospheric conditions, accounting for site latitude, elevation, surface orientation, daily and seasonal shifts in sun angle, and effects of shadows from surrounding topography. The authors find a lag time between insolation and subsequent temperature response that follows an exponential decay from coastal to inland locations. They further develop a linear regression model that accounts for this lag time in quantifying fine-resolved spatiotemporal temperature evolution. This model applies in the considered growing season for spatial distribution across the studied near-coastal landscape.

Corresponding author address: Nikki Vercauteren, Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden. E-mail: nikki.vercauteren@natgeo.su.se

Abstract

This study uses GIS-based modeling of incoming solar radiation to quantify fine-resolved spatiotemporal responses of monthly average temperature, and diurnal temperature variation, at different times and locations within a field study area located on the eastern coast of Sweden. Near-surface temperatures are measured by a network of temperature sensors during the spring and summer of 2011 and then used as the basis for model development and testing. The modeling of finescale spatiotemporal variation considers topography, distance from the sea, and observed variations in atmospheric conditions, accounting for site latitude, elevation, surface orientation, daily and seasonal shifts in sun angle, and effects of shadows from surrounding topography. The authors find a lag time between insolation and subsequent temperature response that follows an exponential decay from coastal to inland locations. They further develop a linear regression model that accounts for this lag time in quantifying fine-resolved spatiotemporal temperature evolution. This model applies in the considered growing season for spatial distribution across the studied near-coastal landscape.

Corresponding author address: Nikki Vercauteren, Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden. E-mail: nikki.vercauteren@natgeo.su.se
Save