• Arndt, D. S., J. B. Basara, R. A. McPherson, B. G. Illston, G. D. McManus, and D. B. Demko, 2009: Observations of the overland reintensification of Tropical Storm Erin (2007). Bull. Amer. Meteor. Soc., 90, 10791093.

    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., and L. R. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081.

    • Search Google Scholar
    • Export Citation
  • Au-Yeung, A. Y. M., and J. C. L. Chan, 2010: The effect of a river delta and coastal roughness variation on a landfalling tropical cyclone. J. Geophys. Res., 115, D19121, doi:10.1029/2009JD013631.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., J. F. Gamache, M. A. Lemone, and G. J. Stossmeister, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev., 119, 776794.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and S. A. Listemaa, 2000: An improved scheme for convective/stratiform echo classification using radar reflectivity. J. Appl. Meteor., 39, 21292150.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and D. S. Hazen, 1989: Doppler-radar analysis of a tropical cyclone over land: Hurricane Alicia (1983) in Oklahoma. Mon. Wea. Rev., 117, 25942611.

    • Search Google Scholar
    • Export Citation
  • Browner, S. P., W. L. Woodley, and C. G. Griffith, 1977: Diurnal oscillation of the area of cloudiness associated with tropical storms. Mon. Wea. Rev., 105, 856864.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., K. S. Liu, S. E. Ching, and E. S. T. Lai, 2004: Asymmetric distribution of convection associated with tropical cyclones making landfall along the south China coast. Mon. Wea. Rev., 132, 24102420.

    • Search Google Scholar
    • Export Citation
  • Cubukcu, N., R. L. Pfeffer, and D. E. Dietrich, 2000: Simulation of the effects of bathymetry and land–sea contrasts on hurricane development using a coupled ocean–atmosphere model. J. Atmos. Sci., 57, 481492.

    • Search Google Scholar
    • Export Citation
  • Czajkowski, J., K. Simmons, and D. Sutter, 2011: An analysis of coastal and inland fatalities in landfalling US hurricanes. Nat. Hazards, 59, 15131531.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128.

  • Dai, A., X. Lin, and K. L. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727744.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., J. Callaghan, and P. Otto, 2008: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 38633872.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev., 105, 11191135.

  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061.

  • Gray, W. M., and R. W. J. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188.

  • Haggard, W. H., T. H. Bilton, and H. L. Crutcher, 1973: Maximum rainfall from tropical cyclone systems which cross the Appalachians. J. Appl. Meteor., 12, 5061.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564.

    • Search Google Scholar
    • Export Citation
  • Hill, K., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315.

  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983. NOAA Tech. Memo. NWS NHC 22, 21 pp. [Available online at http://www.nhc.noaa.gov/pdf/NWS-NHC-1988-22.pdf.]

  • Jiang, H., J. B. Halverson, J. Simpson, and E. J. Zipser, 2008: On the differences in storm rainfall from Hurricanes Isidore and Lili. Part II: Water budget. Wea. Forecasting, 23, 4461.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., C. Liu, and E. J. Zipser, 2011: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteor. Climatol., 50, 12551274.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 12681285.

    • Search Google Scholar
    • Export Citation
  • Kellner, O., D. Niyogi, M. Lei, and A. Kumar, 2012: The role of anomalous soil moisture on the inland reintensification of Tropical Storm Erin (2007). Nat. Hazards, 63, 15731600.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696.

  • Kimball, S. K., 2008: Structure and evolution of rainfall in numerically simulated landfalling hurricanes. Mon. Wea. Rev., 136, 38223847.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., 2001: Diurnal variations in the landfall times of tropical cyclones over the eastern United States. Mon. Wea. Rev., 129, 26272631.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., M. F. Meaux, and D. A. Meaux, 2002: Relationships between tropical cyclone attributes and precipitation totals: Considerations of scale. Int. J. Climatol., 22, 237247.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270.

  • Lajoie, F. A., and I. J. Butterworth, 1984: Oscillation of high-level cirrus and heavy precipitation around Australian region tropical cyclones. Mon. Wea. Rev., 112, 535544.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., J. C. L. Chan, W. C. Cheng, S. L. Tai, and P. W. Wong, 2007: Distribution of convection associated with tropical cyclones making landfall along the South China coast. Meteor. Atmos. Phys., 97, 5768.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., R. Rogers, T. Marchok, and F. D. Marks, 2007: A parametric model for predicting hurricane rainfall. Mon. Wea. Rev., 135, 30863097.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18, 5060.

    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2007: Quantifying the shapes of U.S. landfalling tropical cyclone rain shields. Prof. Geogr., 59, 158172.

  • Matyas, C. J., 2010: Associations between the size of hurricane rain fields at landfall and their surrounding environments. Meteor. Atmos. Phys., 106, 135148.

    • Search Google Scholar
    • Export Citation
  • Maxwell, J. T., P. T. Soule, J. T. Ortegren, and P. A. Knapp, 2012: Drought-busting tropical cyclones in the southeastern Atlantic United States: 1950–2008. Ann. Assoc. Amer. Geogr., 102, 259275.

    • Search Google Scholar
    • Export Citation
  • Medlin, J. M., S. K. Kimball, and K. G. Blackwell, 2007: Radar and rain gauge analysis of the extreme rainfall during Hurricane Danny’s (1997) landfall. Mon. Wea. Rev., 135, 18691888.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Muramatsu, T., 1983: Diurnal-variations of satellite-measured TBB areal distribution and eye diameter of mature typhoons. J. Meteor. Soc. Japan, 61, 7790.

    • Search Google Scholar
    • Export Citation
  • NHC, cited 2012: NHC issuance criteria changes for tropical cyclone watches/warnings. [Available online at http://www.nhc.noaa.gov/watchwarn_changes.shtml.]

  • Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM), 2006: Federal meteorological handbook 11: Doppler radar meteorological observations—Part D, WSR-88D Unit Description and Operational Applications. FCM-H11D-2006, 218 pp. [Available online at http://www.ofcm.gov/fmh11/fmh11partd/pdf/FMH11D-2006.pdf.]

  • Parrish, J. R., R. W. Burpee, F. D. Marks, and R. Grebe, 1982: Rainfall patterns observed by digitized radar during the landfall of Hurricane Frederic (1979). Mon. Wea. Rev., 110, 19331944.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419.

  • Ritchie, E. A., and R. L. Elsberry, 2001: Simulations of the transformation stage of the extratropical transition of tropical cyclones. Mon. Wea. Rev., 129, 14621480.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., S. W. Chang, J. Stout, J. Steranka, and J. J. Shi, 1991: Satellite-observations of variations in tropical cyclone convection caused by upper-tropospheric troughs. J. Appl. Meteor., 30, 11631184.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and R. E. Davis, 1993: The effect of coastline curvature on the weakening of Atlantic tropical cyclones. Int. J. Climatol., 13, 287299.

    • Search Google Scholar
    • Export Citation
  • Sheets, R. C., 1990: The National Hurricane Center—Past, present, and future. Wea. Forecasting, 5, 185232.

  • Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain-gauge data. J. Appl. Meteor., 34, 19782007.

    • Search Google Scholar
    • Export Citation
  • Steranka, J., E. B. Rodgers, and R. C. Gentry, 1984: The diurnal variation of Atlantic Ocean tropical cyclone cloud distribution inferred from geostationary satellite infrared measurements. Mon. Wea. Rev., 112, 23382344.

    • Search Google Scholar
    • Export Citation
  • Sturdevant-Rees, P., J. A. Smith, J. Morrison, and M. L. Baeck, 2001: Tropical storms and the flood hydrology of the central Appalachians. Water Resour. Res., 37, 21432168.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291304.

  • Vincent, D. G., and A. H. Fink, 2001: Tropical cyclone environments over the northeastern and northwestern Pacific based on ERA-15 analyses. Mon. Wea. Rev., 129, 19281948.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., and Y. N. Takayabu, 2008: A statistical study on rain characteristics of tropical cyclones using TRMM satellite data. Mon. Wea. Rev., 136, 38483862.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 214 130 5
PDF Downloads 159 94 16

Processes Influencing Rain-Field Growth and Decay after Tropical Cyclone Landfall in the United States

View More View Less
  • 1 Department of Geography, University of Florida, Gainesville, Florida
Restricted access

Abstract

This study measured rain-field sizes for tropical cyclones (TCs) after U.S. landfall and related changes in size to the diurnal cycle and extratropical transition (ET). For 45 TC landfalls, the spatial properties of the rain fields were calculated through an analysis of radar reflectivity returns within a geographic information system. Variables representing the conditions of the atmosphere and storm attributes were examined at three times and as changes over two time periods to account for lags between condition onset and change in raining-area sizes. Mann–Whitney U tests illustrated which of these variables had significantly different median values when the total raining area or high-reflectivity regions increased or decreased in areal extent over two 12-h periods after landfall. Results indicate that the diurnal cycle influenced changes in rain-field size. Rain-field growth occurred during the late morning and early afternoon, which is between the times for peak areal extent of oceanic- and land-based precipitation in the tropics. The rain fields of TCs completing an ET within 74 h of landfall increased in areal extent during the first 12 h after landfall and decayed during the second 12-h period as they neared the completion of ET. The availability of moisture, which was not related to either the diurnal cycle or processes associated with ET, was also important to rain-field growth or decay. In addition, it was discovered that, for the United States, landfall times have shifted from a peak before midnight during 1950–96 to after midnight during 1995–2008.

Corresponding author address: Corene J. Matyas, 3141 Turlington Hall, Dept. of Geography, University of Florida, Gainesville, FL 32611. E-mail: matyas@ufl.edu

Abstract

This study measured rain-field sizes for tropical cyclones (TCs) after U.S. landfall and related changes in size to the diurnal cycle and extratropical transition (ET). For 45 TC landfalls, the spatial properties of the rain fields were calculated through an analysis of radar reflectivity returns within a geographic information system. Variables representing the conditions of the atmosphere and storm attributes were examined at three times and as changes over two time periods to account for lags between condition onset and change in raining-area sizes. Mann–Whitney U tests illustrated which of these variables had significantly different median values when the total raining area or high-reflectivity regions increased or decreased in areal extent over two 12-h periods after landfall. Results indicate that the diurnal cycle influenced changes in rain-field size. Rain-field growth occurred during the late morning and early afternoon, which is between the times for peak areal extent of oceanic- and land-based precipitation in the tropics. The rain fields of TCs completing an ET within 74 h of landfall increased in areal extent during the first 12 h after landfall and decayed during the second 12-h period as they neared the completion of ET. The availability of moisture, which was not related to either the diurnal cycle or processes associated with ET, was also important to rain-field growth or decay. In addition, it was discovered that, for the United States, landfall times have shifted from a peak before midnight during 1950–96 to after midnight during 1995–2008.

Corresponding author address: Corene J. Matyas, 3141 Turlington Hall, Dept. of Geography, University of Florida, Gainesville, FL 32611. E-mail: matyas@ufl.edu
Save