• Andric, J., D. Zrnic, and V. Melnikov, 2009: Two-layer patterns of enhanced ZDR in clouds. Proc. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P2.12. [Available online at https://ams.confex.com/ams/pdfpapers/155481.pdf.]

  • Bader, M. J., S. A. Clough, and G. P. Cox, 1987: Aircraft and dual polarization radar observations of hydrometeors in light stratiform precipitation. Quart. J. Roy. Meteor. Soc., 113, 491515.

    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II and other field studies. J. Atmos. Sci., 66, 28882899.

    • Search Google Scholar
    • Export Citation
  • Baldini, L., and E. Gorgucci, 2006: Identification of the melting layer through dual-polarization radar measurements at vertical incidence. J. Atmos. Oceanic Technol., 23, 829839.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., R. Cremonini, V. Campana, L. Tomassone, and V. Chandrasekar, 2008: A transportable X-band polarimetric radar in Italy for deployment in complex terrain: Results of the first year measurement campaign. Proc. Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, ERAD 2008. [Available online at http://turbulence.ddo.jp/morishu/mpx/erad2008-0218-extended.pdf.]

  • Bechini, R., V. Chandrasekar, R. Cremonini, and S. Lim, 2010: Radome attenuation at X-band radar operations. Proc. Sixth European Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, ERAD 2010, P15.1. [Available online at http://www.erad2010.org/pdf/POSTER/Thursday/02_Xband/01_ERAD2010_0346_extended.pdf.]

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 3364.

    • Search Google Scholar
    • Export Citation
  • Caylor, I. J., and V. Chandrasekar, 1996: Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar. IEEE Trans. Geosci. Remote Sens., 34, 847858.

    • Search Google Scholar
    • Export Citation
  • Cremonini, R., J. Lavabre, P. Arnaud, M. Fiquet, M. Ponzone, and J. Testud, 2010: CRISTAL: A project to manage hydrological risk in alpine areas by x-band polarimetric radar. Proc. Sixth European Conf. on Radar Meteorology and Hydrology, Sibiu, Romania, ERAD 2010, P15.3. [Available online at http://www.erad2010.org/pdf/POSTER/Thursday/02_Xband/03_ERAD2010_0263_extended.pdf.]

  • Davini, P., R. Bechini, R. Cremonini, and C. Cassardo, 2012: Radar-based analysis of convective storms over northwestern Italy. Atmosphere, 3, 3358.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., U. Germann, J. J. Gourley, and P. Tabary, 2007: Effects of radar beam shielding on rainfall estimation for the polarimetric C-band radar. J. Atmos. Oceanic Technol., 24, 18391859.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2005: Calibration of dual-polarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22, 11561166.

    • Search Google Scholar
    • Export Citation
  • Giuli, D., M. Gherardelli, A. Freni, T. A. Seliga, and K. Aydin, 1991: Rainfall and clutter discrimination by means of dual-linear polarization radar measurements. J. Atmos. Oceanic Technol., 8, 777789.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 2000: Practical aspects of radar rainfall estimation using specific differential propagation phase. J. Appl. Meteor., 39, 945955.

    • Search Google Scholar
    • Export Citation
  • Hendry, A., and G. C. McCormick, 1976: Radar observations of the alignment of precipitation particles by electrostatic fields in thunderstorms. J. Geophys. Res., 81, 53535357.

    • Search Google Scholar
    • Export Citation
  • Hendry, A., G. C. McCormick, and B. L. Barge, 1976: Ku-band and S-band observations of the differential propagation constant in snow. IEEE Trans. Antennas Propag., 24, 521525.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., 1979: Doppler radar study of a warm frontal region. J. Atmos. Sci., 36, 20932107.

  • Hogan, R. J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A. Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Hubbert, J. C., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648.

    • Search Google Scholar
    • Export Citation
  • Jain, R., and I. Chlamtac, 1985: The P2 algorithm for dynamic calculation of quantiles and histograms without storing observations. Commun. ACM, 28, 10761085.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and E. A. Mueller, 1985: Estimation of propagation-differential phase shift from sequential orthogonal linear polarization radar measurements. J. Atmos. Oceanic Technol., 2, 133137.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858.

    • Search Google Scholar
    • Export Citation
  • Koistinen, J., 1991: Operational correction of radar rainfall errors due to the vertical reflectivity profile. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 91–94.

  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974.

  • Korolev, A., G. A. Isaac, and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 28732902.

    • Search Google Scholar
    • Export Citation
  • Lei, L., G. Zhang, R. J. Doviak, R. Palmer, B. L. Cheong, M. Xue, Q. Cao, and Y. Li, 2012: Multilag correlation estimators for polarimetric radar measurements in the presence of noise. J. Atmos. Oceanic Technol., 29, 772795.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164.

    • Search Google Scholar
    • Export Citation
  • Lo, K. H., and R. E. Passarelli Jr., 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706.

    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 321335.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, and B. W. Bartram, 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13, 8596.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490.

    • Search Google Scholar
    • Export Citation
  • Myers, J. L., and A. D. Well, 2003: Research Design and Statistical Analysis. 2nd ed. Lawrence Erlbaum, 508 pp.

  • R Core Team, 2012: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Available online at URL http://www.R-project.org/.]

  • Rogers, R. R., and M. K. Yau, 1988: A Short Course in Cloud Physics. Elsevier Science, 293 pp.

  • Ryzhkov, A. V., and D. S. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35, 20802090.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Oceanic Technol., 24, 12561267.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., K. Kouadio, and C.-A. Etty, 1986: The influence of temperature and supersaturation on the polarization of radar signals. Proc. 23rd Conf. on Radar Meteorology, Snowmass, CO, Amer. Meteor. Soc., 173–176.

  • Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13 (2), 271275.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007.

    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356.

    • Search Google Scholar
    • Export Citation
  • Trapp, J. R., D. M. Schultz, A. V. Ryzhkov, and R. L. Holle, 2001: Multiscale structure and evolution of an Oklahoma winter precipitation event. Mon. Wea. Rev., 129, 486501.

    • Search Google Scholar
    • Export Citation
  • Vignal, B., H. Andrieu, and J. D. Creutin, 1999: Identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteor., 38, 12141228.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., V. N. Bringi, M. Hagen, and P. Meischner, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 110.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnic, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2010: Quantitative precipitation estimation in the CASA X-band dual-polarization radar network. J. Atmos. Oceanic Technol., 27, 16651676.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., S. G. Geotis, N. Renno, S. A. Rutledge, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 13861395.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2011: Dual polarization radar winter storm studies supporting development of NEXRAD-based aviation hazard products. Proc. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 202. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191770.html.]

  • Wolde, M., and G. Vali, 2001a: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci., 58, 828841.

    • Search Google Scholar
    • Export Citation
  • Wolde, M., and G. Vali, 2001b: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part II: Frequencies of occurrence. J. Atmos. Sci., 58, 842849.

    • Search Google Scholar
    • Export Citation
  • Yangang, L., 1993: Statistical theory of the Marshall-Palmer distribution of raindrops. Atmos. Environ., 27A, 1519.

  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 19211940.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., F. Fabry, and W. Szyrmer, 2001: Observations of supercooled water and of secondary ice generation by a vertically pointing X-band Doppler radar. Atmos. Res., 59–60, 343359.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406.

  • Zrnić, D. S., V. M. Melnikov, and A. V. Ryzhkov, 2006: Correlation coefficients between horizontally and vertically polarized returns from ground clutter. J. Atmos. Oceanic Technol., 23, 381394.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 434 274 21
PDF Downloads 311 204 26

Polarimetric Radar Observations in the Ice Region of Precipitating Clouds at C-Band and X-Band Radar Frequencies

View More View Less
  • 1 Colorado State University, Fort Collins, Colorado, and Arpa Piemonte, Turin, Italy
  • | 2 Istituto di Scienze dell’Atmosfera e del Clima (CNR), Rome, Italy
  • | 3 Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

Data collected by C-band and X-band radars in northwestern Italy are analyzed to study the behavior of the polarimetric variables in the ice region of precipitating clouds, with special emphasis on the specific differential phase Kdp. It is found that stratiform precipitation, irrespective of the precipitation type at the ground and as opposed to convective systems, is characterized by well-pronounced positive differential reflectivity Zdr and Kdp values near the model-predicted −15°C isotherm. The regions of enhanced Zdr and Kdp are likely related to the growth of dendrite crystals in the region where the difference between the saturation vapor pressure over water and the saturation vapor pressure over ice is greatest. Coincident C-band and X-band measurements, in conjunction with electromagnetic scattering simulations, demonstrate that Kdp scales with frequency, indicating that the ice particles in the vapor deposition preferential growth zone are Rayleigh scatterers. Peak values around 2.0° and 3.5° km−1 are observed at C band and X band, respectively. Most noteworthy is that an extended analysis of hourly and daily vertical profiles of C-band data over 1 year has shown that Kdp observations around the −15°C temperature level in stratiform precipitation are well correlated (0.8) with the reflectivity in the underlying rain layer.

Corresponding author address: Renzo Bechini, Arpa Piemonte - Dipartimento Sistemi Previsionali, via Pio VII, 9, 10135 Turin, Italy. E-mail: r.bechini@arpa.piemonte.it

Abstract

Data collected by C-band and X-band radars in northwestern Italy are analyzed to study the behavior of the polarimetric variables in the ice region of precipitating clouds, with special emphasis on the specific differential phase Kdp. It is found that stratiform precipitation, irrespective of the precipitation type at the ground and as opposed to convective systems, is characterized by well-pronounced positive differential reflectivity Zdr and Kdp values near the model-predicted −15°C isotherm. The regions of enhanced Zdr and Kdp are likely related to the growth of dendrite crystals in the region where the difference between the saturation vapor pressure over water and the saturation vapor pressure over ice is greatest. Coincident C-band and X-band measurements, in conjunction with electromagnetic scattering simulations, demonstrate that Kdp scales with frequency, indicating that the ice particles in the vapor deposition preferential growth zone are Rayleigh scatterers. Peak values around 2.0° and 3.5° km−1 are observed at C band and X band, respectively. Most noteworthy is that an extended analysis of hourly and daily vertical profiles of C-band data over 1 year has shown that Kdp observations around the −15°C temperature level in stratiform precipitation are well correlated (0.8) with the reflectivity in the underlying rain layer.

Corresponding author address: Renzo Bechini, Arpa Piemonte - Dipartimento Sistemi Previsionali, via Pio VII, 9, 10135 Turin, Italy. E-mail: r.bechini@arpa.piemonte.it
Save