• Ali, A. H., 2004: Application of neural principal components to climate data. J. Atmos. Oceanic Technol., 21, 149158.

  • Benjamin, S. G., B. Jamison, W. Moninger, S. Sahm, B. Schwartz, and T. Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 13191343.

    • Search Google Scholar
    • Export Citation
  • Boisier, J. P., and Coauthors, 2012: Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations. J. Geophys. Res., 117, D12116, doi:10.1029/2011JD017106.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. Cassano, T. Klein, G. Heinemann, K. Hines, K. Steffen, and J. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the polar MM5. Mon. Wea. Rev., 129, 22902309.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., and L. Isaksen, 2003: Use and impact of automated aircraft data in a global 4DVAR data assimilation system. Mon. Wea. Rev., 131, 18651877.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., L. Rukhovets, and J. Tenenbaum, 2004: Jet stream analysis and forecast errors using GADS aircraft observations in the DAO, ECMWF, and NCEP models. Mon. Wea. Rev., 132, 764779.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, A., C. Philbrick, B. Doddridge, R. Clark, and P. Georgopoulos, 2002: A comparative study of prognostic MM5 meteorological modeling with aircraft, wind profiler, lidar, tethered balloon and RASS data over Philadelphia during a 1999 summer episode. Environ. Fluid Mech., 4, 339365.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001a: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604.

    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y., and W. Steenburgh, 2005: Evaluation of surface sensible weather forecasts by the WRF and the Eta Models over the western United States. Wea. Forecasting, 20, 812821.

    • Search Google Scholar
    • Export Citation
  • Cocke, S., H. Lee, G. Lim, and C. Lee, 2006: The NCAR CCM as a numerical weather prediction model. Mon. Wea. Rev., 134, 19541971.

  • Cole, R., and M. Jardin, 2000: Improving RUC-1 wind estimates by incorporating near-real-time aircraft reports. Wea. Forecasting, 15, 447460.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., K. Elmore, J. Kain, S. Weiss, M. Xue, and M. Weisman, 2010: Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA Hazardous Weather Testbed spring experiment. Wea. Forecasting, 25, 408427.

    • Search Google Scholar
    • Export Citation
  • Cornett, J. S., and D. Randerson, 1977: Verification of some numerical models for operationally predicting mesoscale winds aloft. J. Appl. Meteor., 16, 764773.

    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use induced land-cover changes on surface climate over North America and Eurasia: Results from the first of LUCID experiments. J. Climate, 25, 32613281.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J. Grandpeix, J. Piriou, J. Redelsperger, and M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and P. Siebesma, 2008: Simple parameterization for detrainment in shallow cumulus. Mon. Wea. Rev., 136, 560576.

  • Evans, J., and R. Geerken, 2004: Discrimination between climate and human-induced dryland degradation. J. Arid Environ., 57, 535554, doi:10.1016/S0140-1963(03)00121-6.

    • Search Google Scholar
    • Export Citation
  • Fischer, G., F. Nachtergaele, S. Prieler, H. T. van Velthuizen, L. Verelst, and D. Wiberg, cited 2011: Global agro-ecological zones assessment for agriculture (GAEZ 2008). [Available online at http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/Dominant_2000.html.]

  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, doi:10.1029/2006GL025734.

  • Goodrich Sensor Systems, 2002a: Sensor Systems Air Data Handbook. Rosemount Aerospace, 20 pp.

  • Goodrich Sensor Systems, 2002b: C-130 Product Guide. Rosemount Aerospace, 39 pp.

  • Grell, G. A., J. Dudhia, and D. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 128 pp.

  • Guo, Z., D. Bromwich, and J. Cassano, 2003: Evaluation of polar MM5 simulations of Antarctic atmospheric circulation. Mon. Wea. Rev., 131, 384411.

    • Search Google Scholar
    • Export Citation
  • Hines, K., and D. Bromwich, 2008: Development and testing of Polar Weather Research and Forecasting (WRF) model. Part I: Greenland ice sheet meteorology. Mon. Wea. Rev., 136, 19711989.

    • Search Google Scholar
    • Export Citation
  • Hogue, T. S., L. Bastidas, H. Gupta, S. Sorooshian, K. Mitchell, and W. Emmerich, 2005: Evaluation of transferability of the Noah land surface model in semiarid environments. J. Hydrol., 6, 6884.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 2007: Uncertainty and inference for verification measures. Wea. Forecasting, 22, 637650.

  • Jones, M. S., B. Colle, and J. Tongue, 2007: Evaluation of a mesoscale short-range ensemble forecast system over the northeast United States. Wea. Forecasting, 22, 3655.

    • Search Google Scholar
    • Export Citation
  • Jonker, S., 2005: Evaluation study of the Kain–Fritsch convection scheme. KNMI Tech. Rep. TR275, KNMI, 69 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Khelif, D., S. Burns, and C. Friehe, 1999: Improved wind measurements on research aircraft. J. Atmos. Oceanic Technol., 16, 860875.

  • Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. Meehl, 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., M. Tewari, and F. Chen, 2008: Evaluation of the Noah land surface model using data from a fair-weather IHOP_2002 day with heterogeneous surface fluxes. Mon. Wea. Rev., 136, 49154941.

    • Search Google Scholar
    • Export Citation
  • Manning, K. W., and C. Davis, 1997: Verification and sensitivity experiments for the WISP94 MM5 forecasts. Wea. Forecasting, 12, 719735.

    • Search Google Scholar
    • Export Citation
  • Mass, C., 2006: The uncoordinated giant: Why U.S. weather research and prediction are not achieving their potential. Bull. Amer. Meteor. Soc., 87, 573584.

    • Search Google Scholar
    • Export Citation
  • Moninger, W., R. Mamrosh, and P. Pauley, 2003: Automated meteorological reports from commercial aircraft. Bull. Amer. Meteor. Soc., 84, 203216.

    • Search Google Scholar
    • Export Citation
  • Montreal Weather Center, cited 2012: Archives. [Available online at http://meteocentre.com/archive/archive.php?lang=en.]

  • Myoung, B., Y. Choi, S. Choi, and S. Park, 2012: Impact of vegetation on land-atmosphere coupling strength and its implication for desertification mitigation over East Asia. J. Geophys. Res., 117, D12113, doi:10.1029/2011JD017143.

    • Search Google Scholar
    • Export Citation
  • National Weather Service, cited 2012: National snow analysis. [Available online at http://www.nohrsc.noaa.gov/nsa/index.html?region=National&year=2009&month=4&day=4&units=e.]

  • Pattanayak, S., and U. Mohanty, 2008: A comparative study on performance of MM5 and WRF models in simulation of tropical cyclones over Indian seas. Curr. Sci., 95, 923936.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076.

    • Search Google Scholar
    • Export Citation
  • Riggs, H. C., 1985: Developments in Water Science: Streamflow Characteristics. Elsevier, 249 pp.

  • Seidel, D., S. Bomin, M. Pettey, and A. Reale, 2011: Global radiosonde balloon drift statistics. J. Geophys. Res., 116, D07102, doi:10.1029/2010JD014891.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. Wood, 2008: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dyn., 31, 79105.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and M. Holtslag, 1996: Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci., 53, 23542364.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp.

  • Song, Q., T. Hara, P. Cornillon, and C. Friehe, 2004: A comparison between observations and MM5 simulations of the marine atmospheric boundary layer across a temperature front. J. Atmos. Oceanic Technol., 21, 170178.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 2000: Meteorology for Scientists and Engineers. Brooks/Cole, 502 pp.

  • Telfeyan, R., D. Rozema, and J. Wesely, 2005: The Interactive Grid Analysis and Display System (IGrADS) for the Armed Forces. Preprints, 21st Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Diego, CA, Amer. Meteor. Soc., P15.1. [Available online at https://ams.confex.com/ams/Annual2005/webprogram/Paper83180.html.]

  • University of Wyoming, cited 2012: Upper Air Sounding Database. [Available online at http://weather.uwyo.edu/upperair/sounding.html.]

  • U.S. Air Force, 2006: C-130 Operations Procedures. Department of the Air Force, 300 pp.

  • Wang, X., D. Barker, C. Snyder, and T. Hamill, 2008: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147.

    • Search Google Scholar
    • Export Citation
  • Wei, H., Y. Xia, K. Mitchell, and M. Ek, 2012: Improvement of the Noah land surface model for warm season process: Evaluation of water and energy flux simulation. Hydrol. Processes, 27, 297303, doi:10.1002/hyp.9214.

    • Search Google Scholar
    • Export Citation
  • Wilson, A. B., D. Bromwich, and K. Hines, 2011: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: Surface and upper air analysis. J. Geophys. Res., 116, D11112, doi:10.1029/2010JD015013.

    • Search Google Scholar
    • Export Citation
  • Wilson, A. B., D. Bromwich, and K. Hines, 2012: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain. 2. Atmospheric hydrologic cycle. J. Geophys. Res., 117, D04107, doi:10.1029/2011JD016765.

    • Search Google Scholar
    • Export Citation
  • Wroblewski, D. E., O. Coté, J. Hacker, and R. Dobosy, 2010: Velocity and temperature structure functions in the upper troposphere and lower stratosphere from high-resolution aircraft measurements. J. Atmos. Sci., 67, 11571170.

    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Qian, G. Lin, R. Leung, and Y. Zhang, 2012: Some issues in uncertainty quantification and parameter tuning: A case study of convective parameterization scheme in the WRF regional climate model. Atmos. Chem. Phys., 12, 24092427, doi:10.5194/acp-12-2409-2012.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., V. Dulière, P. Mote, and E. Salathé, 2009: Evaluation of WRF and HadRM mesoscale climate simulations over the U.S. Pacific Northwest. J. Climate, 22, 55115526.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Z. Toth, R. Wobus, D. Richardson, and K. Mylne, 2002: The economic value of ensemble-based weather forecasts. Bull. Amer. Meteor. Soc., 83, 7383.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 55 0
PDF Downloads 81 51 0

Upper-Troposphere MM5 and WRF Temperature Error and Vertical Velocity Coupling

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas
Restricted access

Abstract

The fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and the Weather Research and Forecasting Model (WRF) have been employed to predict troposphere temperatures for atmospheric study and operational decision making with positive results. Temperature bias in MM5 and WRF has been noted in previous troposphere studies through radiosonde vertical profile comparison; however, long-range horizontal in situ temperature observations have never been utilized to assess MM5 and WRF upper-troposphere temperature prediction. This study investigates upper-troposphere temperature forecasting of MM5 and WRF utilizing long-range in situ observations linking temperature error to forecast vertical velocity within the upper troposphere over surface elevation changes and different surface types. Temperature observations were taken during flights over North America, Europe, and southwest Asia between 6000 and 7600 m above sea level and compared with MM5 and WRF upper-troposphere forecasts. Regression analysis indicated MM5 and WRF upper-troposphere temperature forecast errors were related to changes in forecast vertical velocities within 100 km laterally of the modeled flight tracks between 39° and 59°N latitude. Temperature error and forecast vertical velocity coupling occurred in MM5 and WRF forecasts over land, while no evidence of temperature error and forecast vertical velocity coupling in MM5 or WRF forecasts was found over water. Evaluation of MM5 and WRF forecasts displayed varying results of temperature error and forecast vertical velocity coupling between specific surface elevations above sea level, vegetative cover, and urban influences.

Corresponding author address: Kelly Soich, 4800 Calhoun Rd., Houston, TX 77004. E-mail: k.soich@att.net

Abstract

The fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and the Weather Research and Forecasting Model (WRF) have been employed to predict troposphere temperatures for atmospheric study and operational decision making with positive results. Temperature bias in MM5 and WRF has been noted in previous troposphere studies through radiosonde vertical profile comparison; however, long-range horizontal in situ temperature observations have never been utilized to assess MM5 and WRF upper-troposphere temperature prediction. This study investigates upper-troposphere temperature forecasting of MM5 and WRF utilizing long-range in situ observations linking temperature error to forecast vertical velocity within the upper troposphere over surface elevation changes and different surface types. Temperature observations were taken during flights over North America, Europe, and southwest Asia between 6000 and 7600 m above sea level and compared with MM5 and WRF upper-troposphere forecasts. Regression analysis indicated MM5 and WRF upper-troposphere temperature forecast errors were related to changes in forecast vertical velocities within 100 km laterally of the modeled flight tracks between 39° and 59°N latitude. Temperature error and forecast vertical velocity coupling occurred in MM5 and WRF forecasts over land, while no evidence of temperature error and forecast vertical velocity coupling in MM5 or WRF forecasts was found over water. Evaluation of MM5 and WRF forecasts displayed varying results of temperature error and forecast vertical velocity coupling between specific surface elevations above sea level, vegetative cover, and urban influences.

Corresponding author address: Kelly Soich, 4800 Calhoun Rd., Houston, TX 77004. E-mail: k.soich@att.net
Save