Long-Term Simulations of Thermally Driven Flows and Orographic Convection at Convection-Parameterizing and Cloud-Resolving Resolutions

Wolfgang Langhans Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule Zürich, and Centre for Climate Systems Modeling, Zurich, Switzerland

Search for other papers by Wolfgang Langhans in
Current site
Google Scholar
PubMed
Close
,
Juerg Schmidli Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland

Search for other papers by Juerg Schmidli in
Current site
Google Scholar
PubMed
Close
,
Oliver Fuhrer Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich, Switzerland

Search for other papers by Oliver Fuhrer in
Current site
Google Scholar
PubMed
Close
,
Susanne Bieri Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland

Search for other papers by Susanne Bieri in
Current site
Google Scholar
PubMed
Close
, and
Christoph Schär Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland

Search for other papers by Christoph Schär in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The purpose of this paper is to validate the representation of topographic flows and moist convection over the European Alps in a convection-parameterizing simulation (CPM; Δx = 6.6 km) and two cloud-resolving simulations (CRM; Δx = 1.1 and 2.2 km). All simulations and further sensitivity experiments are validated against a large set of observations for an 18-day fair-weather summer period. The episode considered is characterized by pronounced plain–valley pressure gradients, strong daytime upvalley flows, and weak nighttime down-valley flows. In addition, convective precipitation is recorded during the late afternoon and is preceded by a phase of shallow convection. The observed transition from shallow to deep convection occurs within a 3-h period. The results indicate good agreement between both CRMs and the observed diurnal evolution in terms of near-surface winds, cloud formation, and precipitation. The differences between the two CRMs are surprisingly small. In contrast, the CPM produces too-early peaks of cloud cover and precipitation that are due to a too-early activation of deep convection. Detailed sensitivity experiments show that the convection scheme, rather than the underresolved small-scale topography, is responsible for the poor performance of the CPM. In addition, observations and simulations show that late-morning mass convergence does not correlate with afternoon precipitation. Rather, it is found that enhanced convective activity is related to increased conditional instability.

Corresponding author address: Wolfgang Langhans, Institute for Atmospheric and Climate Science, Universitätstrasse 16, 8092 Zurich, Switzerland. E-mail: wolfgang.langhans@env.ethz.ch

Abstract

The purpose of this paper is to validate the representation of topographic flows and moist convection over the European Alps in a convection-parameterizing simulation (CPM; Δx = 6.6 km) and two cloud-resolving simulations (CRM; Δx = 1.1 and 2.2 km). All simulations and further sensitivity experiments are validated against a large set of observations for an 18-day fair-weather summer period. The episode considered is characterized by pronounced plain–valley pressure gradients, strong daytime upvalley flows, and weak nighttime down-valley flows. In addition, convective precipitation is recorded during the late afternoon and is preceded by a phase of shallow convection. The observed transition from shallow to deep convection occurs within a 3-h period. The results indicate good agreement between both CRMs and the observed diurnal evolution in terms of near-surface winds, cloud formation, and precipitation. The differences between the two CRMs are surprisingly small. In contrast, the CPM produces too-early peaks of cloud cover and precipitation that are due to a too-early activation of deep convection. Detailed sensitivity experiments show that the convection scheme, rather than the underresolved small-scale topography, is responsible for the poor performance of the CPM. In addition, observations and simulations show that late-morning mass convergence does not correlate with afternoon precipitation. Rather, it is found that enhanced convective activity is related to increased conditional instability.

Corresponding author address: Wolfgang Langhans, Institute for Atmospheric and Climate Science, Universitätstrasse 16, 8092 Zurich, Switzerland. E-mail: wolfgang.langhans@env.ethz.ch
Save
  • Arakawa, A., 2011: Multiscale modeling of the moist-convective atmosphere—A review. Atmos. Res., 102, 263285.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340356.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and W. R. Cotton, 1981: An analysis of the structure of local wind systems in a broad mountain basin. J. Appl. Meteor., 20, 12551266.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and C. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463476.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., U. Corsmeier, C. Meißner, F. Braun, and C. Kottmeier, 2006: The influence of mesoscale circulation systems on triggering convective cells over complex terrain. Atmos. Res., 81, 150175.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass-flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127, 869886.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137.

    • Search Google Scholar
    • Export Citation
  • Bica, B., and Coauthors, 2007: Thermally and dynamically induced pressure features over complex terrain from high-resolution analyses. J. Appl. Meteor. Climatol., 46, 5065.

    • Search Google Scholar
    • Export Citation
  • Bossert, J. E., and W. R. Cotton, 1994: Regional-scale flows in mountainous terrain. Part I: A numerical and observational comparison. Mon. Wea. Rev., 122, 14491471.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113, 21082121.

  • Brockhaus, P., D. Lüthi, and C. Schär, 2008: Aspects of the diurnal cycle in a regional climate model. Meteor. Z., 17, 433443.

  • Broder, B., and H. A. Gygax, 1985: Terrain-induced effects on the ozone, temperature, and water vapor daily variation in the upper part of the PBL over hilly terrain. Tellus, 37B, 259271.

    • Search Google Scholar
    • Export Citation
  • Buzzi, M., 2008: Challenges in operational numerical weather prediction at high resolution in complex terrain. Ph.D. thesis, ETH Zurich, 187 pp.

  • Cassano, J. J., and T. R. Parish, 2000: An analysis of the nonhydrostatic dynamics in numerically simulated Antarctic katabatic flows. J. Atmos. Sci., 57, 891898.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., and G. Kelly, 2002: Model clouds as seen from space: Comparison with geostationary imagery in the 11-μm window channel. Mon. Wea. Rev., 130, 712722.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., P. Bauer, G. Kelly, C. Jakob, and T. McNally, 2001: Model clouds over oceans as seen from space: Comparison with HIRS/2 and MSU radiances. J. Climatol., 14, 42164229.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep alpine valley. Part I: Methodology, verification, and sensitivity experiments. J. Appl. Meteor. Climatol., 45, 6386.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., E. Kjellström, F. Giorgi, G. Lenderink, and M. Rummukainen, 2010: Weight assignments in regional climate models. Climate Res., 44, 179194.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., L. G. Raymond, P. J. Wetzel, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part I: The mountain-generated component. Mon. Wea. Rev., 111, 18931918.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. H. Bryan, and S. C. van den Heever, 2011: Storm and Cloud Dynamics. Academic Press, 809 pp.

  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402.

    • Search Google Scholar
    • Export Citation
  • Dalu, G. A., M. Baldi, R. A. Pielke, and G. Leoncini, 2003: Mesoscale nonhydrostatic and hydrostatic pressure gradient forces—Theory. J. Atmos. Sci., 60, 22492266.

    • Search Google Scholar
    • Export Citation
  • Defant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde (On the theory of slope winds, together with observations on the theory of mountain and valley winds). Arch. Meteor. Geophys. Bioklimatol., 1, 421450.

    • Search Google Scholar
    • Export Citation
  • Demko, J. C., and B. Geerts, 2010a: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina Mountains in Arizona. Part I: Circulation without deep convection. Mon. Wea. Rev., 138, 19021922.

    • Search Google Scholar
    • Export Citation
  • Demko, J. C., and B. Geerts, 2010b: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina Mountains in Arizona. Part II: Interaction with deep convection. Mon. Wea. Rev., 138, 36033622.

    • Search Google Scholar
    • Export Citation
  • Demko, J. C., B. Geerts, Q. Miao, and J. A. Zehnder, 2009: Boundary layer energy transport and cumulus development over a heated mountain: An observational study. Mon. Wea. Rev., 137, 447468.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S., D. G. Steyn, J. D. Fast, M. W. Rotach, and S. Zhong, 2005: The performance of RAMS in representing the convective boundary layer structure in a very steep valley. Environ. Fluid Mech., 5, 3562.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and J. Förstner, 2004: Development of a kilometer-scale NWP-system: LMK. COSMO Newsletter, No. 4, 159–167. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter04/chp9-5.pdf.]

  • Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale short-range ensemble forecasting. Wea. Forecasting, 20, 328350.

  • Egger, J., 1990: Thermally forced flows: Theory. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 43–58.

  • Eyre, J. R., 1991: A fast radiative transfer model for satellite sounding systems. ECMWF Tech. Memo. 176, 28 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/001-300/tm176.pdf.]

  • Finke, U., and T. Hauf, 1996: The characteristics of lightning occurrence in southern Germany. Beitr. Phys. Atmos., 69, 361374.

  • Gantner, L., M. Hornsteiner, J. Egger, and G. Hartjenstein, 2003: The diurnal circulation of Zugspitzplatt: Observations and modeling. Meteor. Z., 12, 95102.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and J. K. Demko, 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 42724288.

    • Search Google Scholar
    • Export Citation
  • Germann, U., G. Galli, M. Boscacci, and M. Bolliger, 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183. [Available online at http://www.wmo.int/pages/publications/bulletin_en/archive/58_3_en/documents/58_3_giorgi_en.pdf.]

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172.

    • Search Google Scholar
    • Export Citation
  • Heise, E., M. Lange, B. Ritter, and R. Schrodin, 2003: Improvement and validation of the multi-layer soil model. COSMO Newsletter, No. 3, 198–203. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter03/cnl3-chp9-12.pdf.]

  • Henne, S., and Coauthors, 2004: Quantification of topographic venting of boundary layer air to the free troposphere. Atmos. Chem. Phys., 4, 497509.

    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., and H. Schmidt, 1985: Wind phenomena in the Dischma valley during DISKUS. Arch. Meteor. Geophys. Bioklimatol., 35, 361387.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, and C. Schär, 2008: Towards climate simulations at cloud-resolving scales. Meteor. Z., 17, 383394.

  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020.

    • Search Google Scholar
    • Export Citation
  • Jäger, E. B., I. Anders, D. Lüthi, B. Rockel, C. Schär, and S. I. Seneviratne, 2008: Analysis of ERA40-driven CLM simulations for Europe. Meteor. Z., 17, 349367.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entrainment/detrainment plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, P., 2008: Association of surface stations to NWP model grid points. COSMO Newsletter, No. 9, 54–55. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter09/cnl9-10.pdf.]

  • Keil, C., A. Tafferner, and T. Reinhardt, 2006: Synthetic satellite imagery in the Lokal-Modell. Atmos. Res., 82, 1925.

  • Khlopenkov, K. V., and A. P. Trishchenko, 2007: SPARC: New cloud, snow, and cloud shadow detection scheme for historical 1-km AVHHR data over Canada. J. Atmos. Oceanic Technol., 24, 322343.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., and R. Wilhelmson, 1978: Simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

  • Kuwagata, T., 1997: An analysis of summer rain showers over central Japan and its relation with the thermally induced circulation. J. Meteor. Soc. Japan, 75, 513527.

    • Search Google Scholar
    • Export Citation
  • Kuwagata, T., and F. Kimura, 1997: Daytime boundary layer evolution in a deep valley. Part II: Numerical simulation of the cross-valley circulation. J. Appl. Meteor., 36, 883895.

    • Search Google Scholar
    • Export Citation
  • Langhans, W., 2012: Multiscale aspects of cloud-resolving simulations of moist summer convection over complex terrain. Ph.D. thesis, ETH Zurich, 207 pp.

  • Langhans, W., J. Schmidli, and C. Schär, 2012a: Bulk convergence of cloud-resolving simulations of moist convection over complex terrain. J. Atmos. Sci., 69, 22072228.

    • Search Google Scholar
    • Export Citation
  • Langhans, W., J. Schmidli, and C. Schär, 2012b: Mesoscale impacts of explicit numerical diffusion in a convection-permitting model. Mon. Wea. Rev., 140, 226244.

    • Search Google Scholar
    • Export Citation
  • Linder, W., W. Schmid, and H. H. Schiesser, 1999: Surface winds and development of thunderstorms along southwest–northeast-oriented mountain chains. Wea. Forecasting, 14, 758770.

    • Search Google Scholar
    • Export Citation
  • Lugauer, M., and P. Winkler, 2005: Thermal circulation in South Bavaria—Climatology and synoptic aspects. Meteor. Z., 14, 1530.

  • Marsigli, C., F. Boccanera, A. Montani, and T. Paccagnella, 2005: The COSMO-LEPS mesoscale ensemble system: Validation of the methodology and verification. Nonlinear Processes Geophys., 12, 527536.

    • Search Google Scholar
    • Export Citation
  • Marty, C., R. Philipona, C. Fröhlich, and A. Ohmura, 2002: Altitude dependence of surface radiation fluxes and cloud forcing in the Alps: Results from the Alpine surface radiation budget network. Theor. Appl. Climatol., 72, 137155.

    • Search Google Scholar
    • Export Citation
  • Matricardi, M., F. Chevallier, and S. Tjemkes, 2001: An improved general fast radiative transfer model for the assimilation of radiance observations. ECMWF Tech. Memo. 345, 42 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/301-400/tm345.pdf.]

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • MeteoSchweiz, cited 2012: Juli 2006: Klimatologisch ein extremer Monat (July 2006: A climatologically extreme month). [Available online at http://www.meteoschweiz.admin.ch/web/de/wetter/wetterereignisse/juli_2006_erste_bilanz.html.]

  • Moeng, C.-H., P. P. Sullivan, M. F. Khairoutdinov, and D. A. Randall, 2010: A mixed scheme for subgrid-scale fluxes in cloud-resolving models. J. Atmos. Sci., 67, 36923705.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale models: A critical review. Mon. Wea. Rev., 120, 326344.

    • Search Google Scholar
    • Export Citation
  • Müller, M. D., and D. Scherer, 2005: A grid- and subgrid-scale radiation parameterization of topographic effects for mesoscale weather forecast models. Mon. Wea. Rev., 133, 14311442.

    • Search Google Scholar
    • Export Citation
  • Neininger, B., and O. Liechti, 1984: Local winds in the upper Rhone valley. GeoJournal, 8, 265270.

  • Nickus, U., and I. Vergeiner, 1984: The thermal structure of the Inn valley atmosphere. Meteor. Atmos. Phys., 33, 199215.

  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Pauley, P. M., 1998: An example of the uncertainty in sea level pressure reduction. Wea. Forecasting, 13, 833850.

  • Raschendorfer, M., 2001: The new turbulence parameterization of LM. COSMO Newsletter, No. 1, 89–98. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter01/newsLetter_01.pdf.]

  • Reinhardt, T., and A. Seifert, 2006: A three-category ice-scheme for LMK. COSMO Newsletter, No. 6, 115–120. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter06/cnl6_reinhardt.pdf.]

  • Reiter, E. R., and M. Tang, 1984: Plateau effects on diurnal circulation effects. Mon. Wea. Rev., 112, 638651.

  • Richard, E., and Coauthors, 2011: Forecasting summer convection over the Black Forest: A case study from the Convective and Orographically-induced Precipitation Study (COPS) experiment. Quart. J. Roy. Meteor. Soc., 137, 101117.

    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J. F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and D. Zardi, 2007: On the boundary-layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937948.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., M. Matricardi, and P. Brundel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 14071425.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., 2011: The diurnal cycle of midlatitude, summertime moist convection over land in an idealized cloud-resolving model. Ph.D. thesis, ETH Zurich, 207 pp.

  • Schlemmer, L., C. Hohenegger, J. Schmidli, C. S. Bretherton, and C. Schär, 2011: An idealized cloud-resolving framework for the study of midlatitude diurnal convection over land. J. Atmos. Sci., 68, 10411057.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with Meteosat. Adv. Space Res., 19, 433441.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., and R. Rotunno, 2010: Mechanisms of along-valley winds and heat exchange over mountainous terrain. J. Atmos. Sci., 67, 30333047.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., 1984: Area–height distribution of a valley and its relation to the valley wind. Contrib. Atmos. Phys., 57, 6471.

  • Steppeler, J., and Coauthors, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds—Observations and elementary thoughts. Meteor. Atmos. Phys., 36, 264286.

    • Search Google Scholar
    • Export Citation
  • Wagner, A., 1932: Neue Theorie des Berg- und Talwindes (A new theory of mountain and valley winds). Meteor. Z., 49, 329341.

  • Weissmann, M., F. J. Braun, L. Ganter, G. J. Mayr, S. Rahm, and O. Reitebuch, 2005: The Alpine mountain–plain circulation: Airborne Doppler lidar measurements and numerical simulations. Mon. Wea. Rev., 133, 30953109.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 5–42.

  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Wüest, M., M. Litschi, A. Altenhoff, C. Frei, M. Hagen, and C. Schär, 2010: A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int. J. Climatol., 30, 17641775.

    • Search Google Scholar
    • Export Citation
  • Yang, X., 1991: A study of nonhydrostatic effects in idealized sea breeze systems. Bound.-Layer Meteor., 54, 183208.

  • Yin, S., W. Li, D. Chen, J.-H. Jeong, and W. Guo, 2011: Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization. Adv. Atmos. Sci., 28, 725734.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2004: A reexamination of the valley wind system in the Alpine Inn valley with numerical simulations. Meteor. Atmos. Phys., 87, 241256.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., J. Egger, and V. Wirth, 2001: Diurnal winds in the Himalayan Kali Gandaki valley. Part II: Modeling. Mon. Wea. Rev., 129, 10621080.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., and J. Fast, 2003: An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake valley. Mon. Wea. Rev., 131, 13011322.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 635 178 11
PDF Downloads 668 91 16