Analysis of WRF Model Wind Estimate Sensitivity to Physics Parameterization Choice and Terrain Representation in Andalusia (Southern Spain)

F. J. Santos-Alamillos Physics Department, University of Jaén, Jaén, Andalusia, Spain

Search for other papers by F. J. Santos-Alamillos in
Current site
Google Scholar
PubMed
Close
,
D. Pozo-Vázquez Physics Department, University of Jaén, Jaén, Andalusia, Spain

Search for other papers by D. Pozo-Vázquez in
Current site
Google Scholar
PubMed
Close
,
J. A. Ruiz-Arias Physics Department, University of Jaén, Jaén, Andalusia, Spain

Search for other papers by J. A. Ruiz-Arias in
Current site
Google Scholar
PubMed
Close
,
V. Lara-Fanego Physics Department, University of Jaén, Jaén, Andalusia, Spain

Search for other papers by V. Lara-Fanego in
Current site
Google Scholar
PubMed
Close
, and
J. Tovar-Pescador Physics Department, University of Jaén, Jaén, Andalusia, Spain

Search for other papers by J. Tovar-Pescador in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper reports on an evaluation of the relative roles of choice of parameterization scheme and terrain representation in the Weather Research and Forecasting (WRF) mesoscale model, in the context of a regional wind resource assessment. As a first step, 32 configurations using two different schemes for microphysics, cumulus, planetary boundary layer (PBL), or shortwave and longwave radiation were evaluated. In a second step, wind estimates that were obtained from various experiments with different spatial resolution (1, 3, and 9 km) were assessed. Estimates were tested against data from four stations, located in southern Spain, that provided hourly wind speed and direction data at 40 m above ground level. Results from the first analysis showed that wind speed standard deviation (STD) and bias values were mainly sensitive to the PBL parameterization selection, with STD differences up to 10% and bias differences between −15% and 10%. The second analysis showed a weak influence of spatial resolution on the STD values. On the other hand, the bias was found to be highly sensitive to model spatial resolution. The sign of the bias depended on terrain morphology and the spatial resolution, but absolute values tended to be much higher with coarser spatial resolution. Physical configuration was found to have little impact on wind direction distribution estimates. In addition, these estimates proved to be more sensitive to the ability of WRF to represent the terrain morphology around the station than to the model spatial resolution itself.

Corresponding author address: D. Pozo-Vázquez, Physics Department, University of Jaén, Campus Las Lagunillas s/n Edif A3, E23071, Jaén, Spain. E-mail: dpozo@ujaen.es

Abstract

This paper reports on an evaluation of the relative roles of choice of parameterization scheme and terrain representation in the Weather Research and Forecasting (WRF) mesoscale model, in the context of a regional wind resource assessment. As a first step, 32 configurations using two different schemes for microphysics, cumulus, planetary boundary layer (PBL), or shortwave and longwave radiation were evaluated. In a second step, wind estimates that were obtained from various experiments with different spatial resolution (1, 3, and 9 km) were assessed. Estimates were tested against data from four stations, located in southern Spain, that provided hourly wind speed and direction data at 40 m above ground level. Results from the first analysis showed that wind speed standard deviation (STD) and bias values were mainly sensitive to the PBL parameterization selection, with STD differences up to 10% and bias differences between −15% and 10%. The second analysis showed a weak influence of spatial resolution on the STD values. On the other hand, the bias was found to be highly sensitive to model spatial resolution. The sign of the bias depended on terrain morphology and the spatial resolution, but absolute values tended to be much higher with coarser spatial resolution. Physical configuration was found to have little impact on wind direction distribution estimates. In addition, these estimates proved to be more sensitive to the ability of WRF to represent the terrain morphology around the station than to the model spatial resolution itself.

Corresponding author address: D. Pozo-Vázquez, Physics Department, University of Jaén, Campus Las Lagunillas s/n Edif A3, E23071, Jaén, Spain. E-mail: dpozo@ujaen.es
Save
  • Alsamamra, H., 2009: Using geostatistical techniques to obtain high spatial resolution climate maps for Andalusia (southern Spain). Ph.D. thesis, University of Jaén, 262 pp. [Available online at http://refbase.iecolab.es/files/husainalsamamra/2009/1147_HusainAlsamamra2009.pdf.]

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525.

  • Arya, S., 2001: Introduction to Micrometeorology. Academic Press, 420 pp.

  • Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Quart. J. Roy. Meteor. Soc., 130, 13271347.

    • Search Google Scholar
    • Export Citation
  • Berge, E., R. E. Bredesen, and K. Mollestad, 2007: Combining WAsP with WRF mesoscale model: Evaluation of wind resource assessment for three Norwegian wind farm areas. Proc. EWEC2007, Milan, Italy, European Wind Conference and Exhibition.

  • Borge, R., V. Alexandrov, J. Del Vas, J. Lumbreras, and E. Rodríguez, 2008: A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos. Environ., 42, 85608574.

    • Search Google Scholar
    • Export Citation
  • Byrkjedal, Ø., and E. Berge, 2008: The use of WRF for wind resource mapping in Norway. Preprints, Ninth Annual WRF User's Workshop, Boulder, CO, NCAR, P9.18., 4 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2008/abstracts/P9-18.pdf.]

  • Castro-Díez, Y., D. Pozo-Vázquez, F. Rodrigo, and M. J. Esteban-Parra, 2002: NAO and winter temperature variability in southern Europe. Geophys. Res. Lett., 29, doi:10.1029/2001GL014042.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: Technical report series on global modeling and data assimilation, Volume 3: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp. [Available online at http://archive.org/details/nasa_techdoc_19950009331.]

  • Cohen, C., 2002: A comparison of cumulus parameterizations in idealized sea-breeze simulations. Mon. Wea. Rev., 130, 25542571.

  • Draxl, C., 2012: On the predictability of hub height winds. Technical University of Denmark (DTU) Wind Energy PhD-Rep. Risø-PhD-84(EN), 104 pp. [Available online at http://orbit.dtu.dk/files/10246050/Ris_PhD_84.pdf.]

  • Esteban-Parra, M. J., F. Rodrigo, and Y. Castro-Díez, 1998: Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int. J. Climatol., 18, 15571574.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The shuttle radar topography mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Fernández, J., J. P. Montávez, J. Sáenz, J. F. González-Rouco, and E. Zorita, 2007: Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: Annual cycle. J. Geophys. Res., 112, D04101, doi:10.1029/2005JD006649.

    • Search Google Scholar
    • Export Citation
  • Frank, H. P., O. Rathmann, N. G. Mortensen, and L. Landberg, 2001: The numerical wind atlas—The KAMM/WAsP method. Risø National Laboratory Tech. Rep. Risø-R-1252(EN), 60 pp. [Available online at http://www.risoe.dk/rispubl/VEA/veapdf/ris-r-1252.pdf.]

  • GE Energy, 2010: Western wind and solar integration study. National Renewable Energy Laboratory Tech. Rep. NREL/SR-550-47434, 536 pp. [Available online at http://www.nrel.gov/docs/fy10osti/47434.pdf.]

  • Gibbs, J. A., E. Fedorovich, and A. Eijk, 2011: Evaluating Weather Research and Forecasting (WRF) model predictions of turbulent flow parameters in a dry convective boundary layer. J. Appl. Meteor. Climatol., 50, 24292444.

    • Search Google Scholar
    • Export Citation
  • Hahmann, A., D. Rostkier-Edelstein, F. Vandenberghe, Y. Liu, S. Swerdlin, T. Warner, and R. Babarsky, 2010: A reanalysis system for the generation of mesoscale climatographies. J. Appl. Meteor. Climatol., 49, 954972.

    • Search Google Scholar
    • Export Citation
  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Horvath, D., D. Koracin, R. Vellore, and J. Jiang, 2012: Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res., 117, D11111, doi:10.1029/2012JD017432.

    • Search Google Scholar
    • Export Citation
  • Hu, X. M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844.

    • Search Google Scholar
    • Export Citation
  • Huaxing, L. U., 2008: Modelling terrain complexity. Advances in Digital Terrain Analysis, Springer, 159–176.

  • Jammalamadaka, S., and A. Sengupta, 2001: Topics in Circular Statistics. World Scientific, 322 pp.

  • Jiménez, B., F. Durante, B. Lange, T. Kreutzer, and J. Tambke, 2007: Offshore wind resource assessment with WAsP and MM5: Comparative study for the German Bight. Wind Energy, 10, 121134.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300316.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2010: Quality assurance of surface wind observations from automated weather stations. J. Atmos. Oceanic Technol., 27, 11011122.

    • Search Google Scholar
    • Export Citation
  • Kain, J., and J. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kanamitsu, M., and H. Kanamaru, 2007: Fifty-seven-year California reanalysis downscaling at 10 km (CaRD10). Part I: System detail and validation with observations. J. Climate, 20, 55535571.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., J. H. Jeong, J. H. Bae, S. K. Song, and J. W. Seo, 2005: Study on planetary boundary layer schemes suitable for simulation of sea surface wind in the southeastern coastal area. J. Environ. Sci., 14, 10151026.

    • Search Google Scholar
    • Export Citation
  • Kotroni, V., and K. Lagouvardos, 2001: Precipitation forecast skill of different convective parameterization and microphysical schemes: Application for the cold season over Greece. Geophys. Res. Lett., 28, 19771980.

    • Search Google Scholar
    • Export Citation
  • Kwun, J., Y. Kim, J. Seo, J. Jeong, and S. You, 2009: Sensitivity of MM5 and WRF mesoscale model predictions of surface winds in a typhoon to planetary boundary layer parameterizations. Nat. Hazards, 51, 6377.

    • Search Google Scholar
    • Export Citation
  • Landberg, L., L. Myllerup, O. Rathmann, E. Petersen, B. Jørgensen, J. Badger, and N. Mortensen, 2003: Wind resource estimation an overview. Wind Energy, 6, 261271.

    • Search Google Scholar
    • Export Citation
  • Lavagnini, A., A. Sempreviva, C. Transerici, C. Accadia, M. Casaioli, S. Mariani, and A. Speranza, 2006: Offshore wind climatology over the Mediterranean basin. Wind Energy, 9, 251266.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., J. F. Reed, D. O. Brown, J. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land-cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int. J. Remote Sens., 21, 13031330.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., and Coauthors, 2004: Sensitivity of present and future surface temperatures to precipitation characteristics. Climate Res., 28, 5365.

    • Search Google Scholar
    • Export Citation
  • Miao, J.-F., and Coauthors, 2008: Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations. Meteor. Atmos. Phys., 99, 77103.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E., S. Taubman, P. Brown, M. Iacono, and S. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659.

    • Search Google Scholar
    • Export Citation
  • Mortensen, N. G., L. Landberg, I. Troen, and E. L. Petersen, 1998: Wind Atlas Analysis and Application Program (WAsP), Vol. 1: Getting started. Riso National Laboratory Tech. Rep. Risø-I-666(EN), 30 pp.

  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131.

    • Search Google Scholar
    • Export Citation
  • Otte, T. L., 2008: The impact of nudging in the meteorological model for retrospective air quality simulations. Part II: Evaluating collocated meteorological and air quality observations. J. Appl. Meteor. Climatol., 47, 18681887.

    • Search Google Scholar
    • Export Citation
  • Pérez-Landa, G., P. Ciais, M. Sanz, B. Gioli, F. Miglietta, J. L. Palau, G. Gangoiti, and M. M. Millán, 2007: Mesoscale circulations over complex terrain in the Valencia coastal region, Spain—Part 1: Simulation of diurnal circulation regimes. Atmos. Chem. Phys., 7, 18351849.

    • Search Google Scholar
    • Export Citation
  • Pozo-Vázquez, D., M. Esteban-Parra, F. Rodrigo, and Y. Castro-Díez, 2001: A study of NAO variability and its possible non-linear influences on European surface temperature. Climate Dyn., 17, 701715.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., A. Kesarkar, S. Thampi, T. Rao, B. Radhakrishna, and M. Rajasekhar, 2010: Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Ann. Geophys., 28, 603619.

    • Search Google Scholar
    • Export Citation
  • Ramos-Calzado, P., J. Gómez-Camacho, P. Pérez-Bernal, and M. Pita-López, 2008: A novel approach to precipitation series completion in climatological datasets: Application to Andalusia. Int. J. Climatol., 28, 15251534.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Puebla, C., A. H. Encinas, S. Nieto, and J. Garmendia, 1998: Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int. J. Climatol., 18, 299316.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J., D. Pozo-Vázquez, N. Sánchez-Sánchez, J. Montávez, A. Hayas-Barrú, and J. Tovar-Pescador, 2008: Evaluation of two MM5-PBL parametrizations for solar radiation and temperature estimation in the south-eastern area of the Iberian Peninsula. Nuovo Cimento C, 31, 825842.

    • Search Google Scholar
    • Export Citation
  • Seaman, N. L., 2000: Meteorological modeling for air-quality assessments. Atmos. Environ., 34, 22312259.

  • Seaman, N. L., D. R. Stauffer, and A. M. Lario, 1995: A multiscale four-dimensional data assimilation system applied in the San Joaquin Valley during SARMAP. Part I: Modeling design and basic performance characteristics. J. Appl. Meteor., 34, 17391761.

    • Search Google Scholar
    • Export Citation
  • Sempreviva, A., R. Barthelmie, and S. Pryor, 2008: Review of methodologies for offshore wind resource assessment in European seas. Surv. Geophys., 29, 471497.

    • Search Google Scholar
    • Export Citation
  • Shimada, S., and T. Ohsawa, 2011: Accuracy and characteristics of offshore wind speeds simulated by WRF. SOLA, 7, 2124.

  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751+STR, 125 pp.

  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33, 416434.

  • Stensrud, D., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

  • Trigo, R., T. Osborn, and J. Corte-Real, 2002: The North Atlantic oscillation influence on Europe: Climate impacts and associated physical mechanisms. Climate Res., 20, 917.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 155, ECMWF, Reading, United Kingdom, 12–18.

  • Watson, L., W. Bauman, and B. Hoeth, 2009: Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA. Preprints, 13th Conf. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Phoenix, AZ, Amer. Meteor. Soc., 6.1. [Available online at https://ams.confex.com/ams/89annual/techprogram/paper_144873.htm.]

  • WMO, 2000: Guidelines on performance assessment of public weather services. World Meteorological Organization Tech. Rep. WMO/TD 1023, 67 pp. [Available online at http://www.wmo.int/pages/prog/amp/pwsp/pdf/TD-1023.pdf.]

  • Zagar, N., M. Zagar, M. Cedilnik, C. Gregori, and J. Rakovec, 2006: Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA40 over complex terrain. Tellus, 58A, 445455.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and W. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157169.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2548 915 313
PDF Downloads 1374 286 28