A Physically Based Identification of Vertical Profiles of Reflectivity from Volume Scan Radar Data

Pierre-Emmanuel Kirstetter School of Civil Engineering and Environmental Sciences, University of Oklahoma, NOAA/National Severe Storms Laboratory, and Advanced Radar Research Center, National Weather Center, Norman, Oklahoma

Search for other papers by Pierre-Emmanuel Kirstetter in
Current site
Google Scholar
PubMed
Close
,
Hervé Andrieu L'Université Nantes Angers Le Mans, IFSTTAR Department GER and IRSTV–FR CNRS 2488, Bouguenais, France

Search for other papers by Hervé Andrieu in
Current site
Google Scholar
PubMed
Close
,
Brice Boudevillain Laboratoire d'étude des Transferts en Hydrologie et Environnement, UMR 5564, UJF-Grenoble 1, CNRS, G-INP, IRD, Grenoble, France

Search for other papers by Brice Boudevillain in
Current site
Google Scholar
PubMed
Close
, and
Guy Delrieu Laboratoire d'étude des Transferts en Hydrologie et Environnement, UMR 5564, UJF-Grenoble 1, CNRS, G-INP, IRD, Grenoble, France

Search for other papers by Guy Delrieu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The vertical profile of reflectivity (VPR) must be identified to correct estimations of rainfall rates by radar for the nonuniform beam filling associated with the vertical variation of radar reflectivity. A method for identifying VPRs from volumetric radar data is presented that takes into account the radar sampling. Physically based constraints on the vertical structure of rainfall are introduced with simple VPR models within a rainfall classification procedure defining more homogeneous precipitation patterns. The model parameters are identified in the framework of an extended Kalman filter to ensure their temporal consistency. The method is assessed using the dataset from a volume-scanning strategy for radar quantitative precipitation estimation designed in 2002 for the Bollène radar (France). The physical consistency of the retrieved VPR is evaluated. Positive results are obtained insofar as the physically based identified VPR (i) presents physically consistent shapes and characteristics considering beam effects, (ii) shows improved robustness in the difficult radar measurement context of the Cévennes–Vivarais region, and (iii) provides consistent physical insight into the rain field.

Corresponding author address: Dr. Pierre-Emmanuel Kirstetter, National Weather Center, 120 David L. Boren Blvd., Rm. 4706, Norman, OK 73072-7303. E-mail: pierre.kirstetter@noaa.gov

Abstract

The vertical profile of reflectivity (VPR) must be identified to correct estimations of rainfall rates by radar for the nonuniform beam filling associated with the vertical variation of radar reflectivity. A method for identifying VPRs from volumetric radar data is presented that takes into account the radar sampling. Physically based constraints on the vertical structure of rainfall are introduced with simple VPR models within a rainfall classification procedure defining more homogeneous precipitation patterns. The model parameters are identified in the framework of an extended Kalman filter to ensure their temporal consistency. The method is assessed using the dataset from a volume-scanning strategy for radar quantitative precipitation estimation designed in 2002 for the Bollène radar (France). The physical consistency of the retrieved VPR is evaluated. Positive results are obtained insofar as the physically based identified VPR (i) presents physically consistent shapes and characteristics considering beam effects, (ii) shows improved robustness in the difficult radar measurement context of the Cévennes–Vivarais region, and (iii) provides consistent physical insight into the rain field.

Corresponding author address: Dr. Pierre-Emmanuel Kirstetter, National Weather Center, 120 David L. Boren Blvd., Rm. 4706, Norman, OK 73072-7303. E-mail: pierre.kirstetter@noaa.gov
Save
  • Adler, R. F., and R. A. Mack, 1984: Thunderstorm cloud height–rainfall rate relations for use with satellite rainfall estimation techniques. J. Appl. Meteor., 23, 280296.

    • Search Google Scholar
    • Export Citation
  • Andrieu, H., and J. D. Creutin, 1995: Identification of vertical profiles of radar reflectivity using an inverse method. Part I: Formulation. J. Appl. Meteor., 34, 225239.

    • Search Google Scholar
    • Export Citation
  • Andrieu, H., G. Delrieu, and J. D. Creutin, 1995: Identification of vertical profiles of radar reflectivity using an inverse method. Part II: Sensitivity analysis and case study. J. Appl. Meteor., 34, 240259.

    • Search Google Scholar
    • Export Citation
  • Bellon, A., G. W. Lee, and I. Zawadzki, 2005: Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteor., 44, 9981015.

    • Search Google Scholar
    • Export Citation
  • Bellon, A., G. W. Lee, A. Kilambi, and I. Zawadzki, 2007: Real-time comparisons of VPR-corrected daily rainfall estimates with a gauge mesonet. J. Appl. Meteor., 46, 726741.

    • Search Google Scholar
    • Export Citation
  • Berne, A., G. Delrieu, H. Andrieu, and J. D. Creutin, 2004: Influence of the vertical profile of reflectivity on radar-estimated rain rates at short time steps. J. Hydrometeor., 5, 296310.

    • Search Google Scholar
    • Export Citation
  • Bonnifait, L., G. Delrieu, M. Le Lay, B. Boudevillain, A. Masson, P. Belleudy, E. Gaume, and G. M. Saulnier, 2009: Distributed hydrologic and hydraulic modelling with radar rainfall input: Reconstruction of the 8–9 September 2002 catastrophic flood event in the Gard region, France. Adv. Water Resour., 32, 10771089.

    • Search Google Scholar
    • Export Citation
  • Borga, M., F. Tonelli, R. J. Moore, and H. Andrieu, 2000: Long-term assessment of bias adjustment in radar rainfall estimation. Water Resour. Res., 38, 1226, doi:10.1029/2001WR000555.

    • Search Google Scholar
    • Export Citation
  • Boudevillain, B., and H. Andrieu, 2003: Assessment of vertically integrated liquid (VIL) water content radar measurement. J. Atmos. Oceanic Technol., 20, 807819.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., M. Yeary, and G. Zhang, 2012: Efficient ways to learn weather radar polarimetry. IEEE Trans. Educ., 55, 5868.

  • Chapon, B., G. Delrieu, M. Gosset, and B. Boudevillain, 2008: Variability of rain drop size distribution and its effect on the ZR relationship: A case study for intense Mediterranean rainfall. Atmos. Res., 87, 5265.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Delrieu, G., and Coauthors, 2005: The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: A first case study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeor., 6, 3452.

    • Search Google Scholar
    • Export Citation
  • Delrieu, G., B. Boudevillain, J. Nicol, B. Chapon, P. E. Kirstetter, H. Andrieu, and D. Faure, 2009: Bollène 2002 experiment: Radar rainfall estimation in the Cevennes–Vivarais region. J. Appl. Meteor. Climatol., 48, 14221447.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. Academic Press, 458 pp.

  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56, 35933600.

  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365.

    • Search Google Scholar
    • Export Citation
  • Gelb, A., 1974: Applied Optimal Estimation. MIT Press, 382 pp.

  • Germann, U., and J. Joss, 2002: Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J. Appl. Meteor., 41, 542557.

    • Search Google Scholar
    • Export Citation
  • Hardaker, P. J., A. R. Holt, and C. G. Collier, 1995: A melting-layer model and its use in correcting for the bright band in single-polarization radar echoes. Quart. J. Roy. Meteor. Soc., 121, 495525.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2003: Properties of tropical and midlatitude ice cloud particle ensembles. Part I: Median mass diameters and terminal velocities. J. Atmos. Sci., 60, 2573–2591.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, and C. H. Twohy, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64, 10471067.

    • Search Google Scholar
    • Export Citation
  • Heyraud, C., W. Szyrmer, S. Laroche, and I. Zawadzki, 2008: Modeling of the melting layer. Part IV: Brightband bulk parameterization. J. Atmos. Sci., 65, 19912001.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., H. Andrieu, G. Delrieu, and B. Boudevillain, 2010: Identification of vertical profiles of reflectivity for correction of volumetric radar data using rainfall classification. J. Appl. Meteor. Climatol., 49, 21672180.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., H. Andrieu, B. Boudevillain and G. Delrieu, 2012: Toward a physically-based identification of vertical profiles of reflectivity from volume scan radar data. Proc. Int. Symp. on Weather Radar and Hydrology, Exeter, United Kingdom, IAHS Publication 351, 194–200.

  • Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Quart. J. Roy. Meteor. Soc., 120, 12311254.

    • Search Google Scholar
    • Export Citation
  • Klaassen, W., 1988: Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45, 37413752.

  • Matrosov, S. Y., K. A. Clark, and D. E. Kingsmill, 2007: A polarimetric radar to identify rain, melting-layer and snow regions for applying corrections to vertical profiles of reflectivity. J. Appl. Meteor., 46, 154166.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass–dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29, 153163.

    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part IV: Experiment and theory for snowflakes. J. Atmos. Sci., 47, 584591.

    • Search Google Scholar
    • Export Citation
  • Porrà, J. M., D. Sempere-Torres, and J. D. Creutin, 1998: Modeling of drop size distribution and its applications to rainfall measurements from radar. Stochastic Methods in Hydrology: Rain, Landforms, and Floods, V. K. Gupta et al., Eds., World Scientific, 73–84.

  • Pruppacher, H., and J. Klett, 1998: Microphysics of Clouds and Precipitation. D. Reidel, 976 pp.

  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon Press, 293 pp.

  • Ryzhkov, A. V., S. M. Ganson, A. Khain, M. Pinksy, and A. Pokrovsky, 2009: Polarimetric characteristics of melting hail at S and C bands. Extended Abstracts, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 4A.6. [Available online at http://ams.confex.com/ams/34Radar/techprogram/paper_155571.htm.]

  • Ryzhkov, A. V., M. Pinksy, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observations operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Diezma, R., I. Zawadzki, and D. Sempere-Torres, 2000: Identification of the bright band through the analysis of volumetric radar data. J. Geophys. Res., 105 (D2), 22252236.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci., 28, 983994.

    • Search Google Scholar
    • Export Citation
  • Sempere-Torres, D., J. Porrà, and J.-D. Creutin, 1994: A general formulation for raindrop size distribution. J. Appl. Meteor., 33, 14941502.

    • Search Google Scholar
    • Export Citation
  • Sempere-Torres, D., J. Porrà, and J.-D. Creutin, 1998: Experimental evidence of a general description of raindrop size distribution properties. J. Geophys. Res., 103 (D2), 17851797.

    • Search Google Scholar
    • Export Citation
  • Seo, D. J., J. P. Breidenbach, R. A. Fulton, D. A. Miller, and T. O'Bannon, 2000: Real-time adjustment of range-dependent bias in WSR-88D rainfall data due to nonuniform vertical profile of reflectivity. J. Hydrometeor., 1, 222240.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56, 35733592.

  • Tabary, P., 2007: The new French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, 22, 393408.

  • Testud, J., S. Oury, R. Black, P. Amayenc, and X. Dou, 2001: The concept of normalized distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., 1999: Parameterization of rainfall microstructure for radar meteorology and hydrology. Thèse de doctorat, Wageningen University, Netherlands, 279 pp.

  • Uijlenhoet, R., 2001: Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology. Hydrol. Earth Syst. Sci., 5, 615627.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., J. A. Smith, and M. Steiner, 2003a: The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J. Atmos. Sci., 60, 12201238.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003b: Variability or raindrop size distribution in a squall line and implication for radar rainfall estimation. J. Hydrometeor., 4, 4361.

    • Search Google Scholar
    • Export Citation
  • Vignal, B., H. Andrieu, and J. D. Creutin, 1999: Identification of vertical profiles of reflectivity from voluminal radar data. J. Appl. Meteor., 38, 12141228.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: Universality in snowflake aggregation. Geophys. Res. Lett., 31, L15104, doi:10.1029/2004GL020363.

    • Search Google Scholar
    • Export Citation
  • Willis, T. W., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 20082025.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., W. Szyrmer, C. Bell, and F. Fabry, 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62, 37053723.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 877 407 115
PDF Downloads 460 123 5