Assessment of Dynamical Downscaling in Near-Surface Fields with Different Spectral Nudging Approaches Using the Nested Regional Climate Model (NRCM)

Jiali Wang Environmental Science Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Jiali Wang in
Current site
Google Scholar
PubMed
Close
and
Veerabhadra R. Kotamarthi Environmental Science Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Veerabhadra R. Kotamarthi in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Dynamic downscaling with regional-scale climate models is used widely for increasing the spatial resolution of global-scale climate model projections. One uncertainty in generating these projections is the choice of boundary forcing applied. In this study the Nested Regional Climate Model (NRCM) is used with a grid spacing of 12 km over the United States (excluding Hawaii) to dynamically downscale 2.5° National Centers for Environmental Prediction–U.S. Department of Energy Reanalysis-2 data, with different applications of spectral nudging (SN) for the boundary conditions. Nine numerical experiments for July 2005—each with different wavenumbers and nudging duration periods, applied to different model layers—evaluated the performance of SN in downscaling near-surface fields. The calculations were compared with the North America Regional Reanalysis dataset over four subregions of the contiguous 48 states. Results show significant differences with different wavenumbers, nudging duration periods, and nudging altitudes. The short-period SN with three waves, applied above 850 hPa, showed the highest skill in simulating precipitation, whereas whole-period SN produced a higher skill level and performed slightly better than short-period SN for surface temperature and 10-m wind, respectively. Differences in the performance of SN applied at different altitudes were not significant. On the basis of the comparisons for precipitation, surface temperature, and wind fields over entire contiguous states, whole-period nudging with six waves starting above 850 hPa for downscaling calculations for climate-related variables is recommended. This method improved the performance of the NRCM in predicting near-surface fields by more than 30.5% relative to a case with no nudging.

Corresponding author address: V. R. Kotamarthi, Environmental Science Division, Bldg. 203, J101, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4843. E-mail: vrkotamarthi@anl.gov

Abstract

Dynamic downscaling with regional-scale climate models is used widely for increasing the spatial resolution of global-scale climate model projections. One uncertainty in generating these projections is the choice of boundary forcing applied. In this study the Nested Regional Climate Model (NRCM) is used with a grid spacing of 12 km over the United States (excluding Hawaii) to dynamically downscale 2.5° National Centers for Environmental Prediction–U.S. Department of Energy Reanalysis-2 data, with different applications of spectral nudging (SN) for the boundary conditions. Nine numerical experiments for July 2005—each with different wavenumbers and nudging duration periods, applied to different model layers—evaluated the performance of SN in downscaling near-surface fields. The calculations were compared with the North America Regional Reanalysis dataset over four subregions of the contiguous 48 states. Results show significant differences with different wavenumbers, nudging duration periods, and nudging altitudes. The short-period SN with three waves, applied above 850 hPa, showed the highest skill in simulating precipitation, whereas whole-period SN produced a higher skill level and performed slightly better than short-period SN for surface temperature and 10-m wind, respectively. Differences in the performance of SN applied at different altitudes were not significant. On the basis of the comparisons for precipitation, surface temperature, and wind fields over entire contiguous states, whole-period nudging with six waves starting above 850 hPa for downscaling calculations for climate-related variables is recommended. This method improved the performance of the NRCM in predicting near-surface fields by more than 30.5% relative to a case with no nudging.

Corresponding author address: V. R. Kotamarthi, Environmental Science Division, Bldg. 203, J101, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4843. E-mail: vrkotamarthi@anl.gov
Save
  • Caldwell, P., H. S. Chin, D. C. Bader, and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521.

    • Search Google Scholar
    • Export Citation
  • Carter, T. R., M. L. Parry, H. Harasawa, and S. Nishioka, 1994: IPCC technical guidelines for assessing climate change impacts and adaptions. Cambridge University Press, 59 pp.

  • Cha, D. H., C. S. Jin, D. K. Lee, and Y. H. Kuo, 2011: Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. J. Geophys. Res., 116, D10103, doi:10.1029/2010JD015069.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Civerolo, K. L., C. Hogrefe, B. Lynn, C. Rosenzweig, R. Goldberg, J. Rosenthal, K. Knowlton, and P. L. Kinney, 2008: Simulated effects of climate change on summertime nitrogen deposition in the eastern US. Atmos. Environ., 42, 20742082.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405418.

  • Davies, H. C., 1983: Limitations of some common lateral boundary schemes used in regional NWP models. Mon. Wea. Rev., 111, 10021012.

  • Davies, H. C., and R. E. Turner, 1977: Updating prediction models by dynamical relaxation: An examination of the technique. Quart. J. Roy. Meteor. Soc., 103, 225245.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., cited 2012: WRF four-dimensional data assimilation (FDDA). [Available online at http://www.mmm.ucar.edu/wrf/users/tutorial/201001/WRF_FDDA_Dudhia.ppt.pdf.]

  • Feser, F., 2006: Enhanced detectability of added value in limited-area model results separated into different spatial scales. Mon. Wea. Rev., 134, 21802190.

    • Search Google Scholar
    • Export Citation
  • Feser, F., and H. von Storch, 2005: A spatial two-dimensional discrete filter for limited-area-model evaluation purposes. Mon. Wea. Rev., 133, 17741786.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Regional climate modeling: Status and perspectives. J. Phys. IV France, 139, 101118.

  • Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 63356352, doi:10.1029/98JD02072.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, G. T. Bates, and G. D. Canio, 1993: Development of a second-generation Regional Climate Model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 28142832.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 729.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 pp.

  • Holland, G. J., J. Done, C. Bruyère, C. Cooper, and A. Suzuki, 2010: Model investigations of the effects of climate variability and change on future Gulf of Mexico tropical cyclone activity. Proc. 2010 Offshore Technology Conf., Houston, TX, Offshore Technology Conference, doi:10.4043/20690-MS.

  • Hong, S. Y., and J. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Houghton, J. T., G. J. Jenkins, and J. J. Ephraums, Eds., 1990: Climate Change: The IPCC Scientific Assessment. Cambridge University Press, 410 pp.

  • Houghton, J. T., B. A. Callander, and S. K. Varney, Eds., 1992: Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press, 218 pp.

  • Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, Eds., 1996: Climate Change 1995: The Science of Climate Change. Cambridge University Press, 572 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531.

  • Liang, X. Z., K. E. Kunkel, and A. N. Samel, 2001: Development of a regional climate model for U.S. Midwest applications. Part I: Sensitivity to buffer zone treatment. J. Climate, 14, 43634378.

    • Search Google Scholar
    • Export Citation
  • Liu, P., A. P. Tsimpidi, Y. Hu, B. Stone, A. G. Russell, and A. Nenes, 2012: Differences between downscaling with spectral and grid nudging using WRF. Atmos. Chem. Phys., 12, 36013610.

    • Search Google Scholar
    • Export Citation
  • Lo, J. C., Z. L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res., 113, D09112, doi:10.1029/2007JD009216.

    • Search Google Scholar
    • Export Citation
  • Mabuchi, K., Y. Sato, and H. Kida, 2002: Verification of the climatic features of a regional climate model with BAIM. J. Meteor. Soc. Japan, 80, 621644.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., 2009: Methods of downscaling future climate information and applications National Center for Atmospheric Research. NARCCAP Users' Meeting, Boulder, CO, NCAR. [Available online at http://www.narccap.ucar.edu/users/user-meeting-09/talks/Downscaling_summary_for_NARCCAP_Users_Meet09.pdf.]

  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2005: Regional climate simulations over North America: Interaction of local processes with improved large-scale flow. J. Climate, 18, 12271246.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., G. Marland, R. A. Betts, T. N. Chase, J. L. Eastman, J. O. Niles, D. S. Niyogi, and S. W. Running, 2002: The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effects of greenhouse gases. Philos. Trans. Roy. Soc. London, 360A, 115.

    • Search Google Scholar
    • Export Citation
  • Pu, B., E. K. Vizy, and K. H. Cook, 2012: Warm season response over North America to a shutdown of the Atlantic meridional overturning circulation and CO2 increases. J. Climate, 25, 67016720.

    • Search Google Scholar
    • Export Citation
  • Rockel, B., C. L. Castro, R. A. Pielke Sr., H. von Storch, and G. Leoncini, 2008: Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models. J. Geophys. Res., 113, D21107, doi:10.1029/2007JD009461.

    • Search Google Scholar
    • Export Citation
  • Sertel, E., A. Robock, and C. Ormecia, 2010: Impacts of land cover data quality on regional climate. Int. J. Climatol., 30, 19421953, doi:10.1002/joc.2036.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277.

    • Search Google Scholar
    • Export Citation
  • Trusilova, K., M. Jung, G. Churkina, U. Karstens, M. Heimann, and M. Claussen, 2008: Urbanization impacts on the climate in Europe: Numerical experiments by the PSU–NCAR Mesoscale Model (MM5). J. Appl. Meteor. Climatol., 47, 14421455.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., 1999: The global and regional climate system. Anthropogenic Climate Change, H. von Storch and G. Floser, Eds., Springer-Verlag, 3–36.

  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673.

    • Search Google Scholar
    • Export Citation
  • Waldron, K. M., J. Paegle, and J. D. Horel, 1996: Sensitivity of a spectrally filtered and nudged limited-area model to outer model options. Mon. Wea. Rev., 124, 529547.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and Coauthors, 2012: Advanced Research WRF (ARW) version 3 modeling system user's guide. Mesoscale and Microscale Meteorology Division, NCAR, 384 pp.

  • Wigley, T. M. L., P. D. Jones, K. R. Briffa, and G. Smith, 1990: Obtaining sub-gridscale information from coarse-resolution general circulation model output. J. Geophys. Res., 95, 19431953.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., T. M. L. Wigley, D. Conway, P. D. Jones, B. C. Hewitson, J. Main, and D. S. Wilks, 1998: Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res., 34, 29953008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 991 726 283
PDF Downloads 390 44 2