Atmospheric Forcing of Debris Flows in the Southern Swiss Alps

Andrea Toreti Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University of Giessen, Giessen, Germany

Search for other papers by Andrea Toreti in
Current site
Google Scholar
PubMed
Close
,
Michelle Schneuwly-Bollschweiler Climatic Change and Climate Impacts Research, Institute for Environmental Sciences, University of Geneva, Geneva, and Laboratory of Dendrogeomorphology, Institute of Geological Sciences, University of Bern, Bern, Switzerland

Search for other papers by Michelle Schneuwly-Bollschweiler in
Current site
Google Scholar
PubMed
Close
,
Markus Stoffel Climatic Change and Climate Impacts Research, Institute for Environmental Sciences, University of Geneva, Geneva, and Laboratory of Dendrogeomorphology, Institute of Geological Sciences, University of Bern, Bern, Switzerland

Search for other papers by Markus Stoffel in
Current site
Google Scholar
PubMed
Close
, and
Jürg Luterbacher Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University of Giessen, Giessen, Germany

Search for other papers by Jürg Luterbacher in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This article addresses the role of large-scale circulation and thermodynamical features in the release of past debris flows in the Swiss Alps by using classification algorithms, potential instability, and convective time scale. The study is based on a uniquely dense dendrogeomorphic time series of debris flows covering the period 1872–2008, reanalysis data, instrumental time series, and gridded hourly precipitation series (1992–2006) over the area. Results highlight the crucial role of synoptic and mesoscale forcing as well as of convective equilibrium on triggering rainfalls. Two midtropospheric synoptic patterns favor anomalous southwesterly flow toward the area and high potential instability. These findings imply a certain degree of predictability of debris-flow events and can therefore be used to improve existing alert systems.

Corresponding author address: Andrea Toreti, Justus-Liebig University of Giessen, 1 Senckenbergstr., 35390 Giessen, Germany. E-mail: andrea.toreti@geogr.uni-giessen.de

Abstract

This article addresses the role of large-scale circulation and thermodynamical features in the release of past debris flows in the Swiss Alps by using classification algorithms, potential instability, and convective time scale. The study is based on a uniquely dense dendrogeomorphic time series of debris flows covering the period 1872–2008, reanalysis data, instrumental time series, and gridded hourly precipitation series (1992–2006) over the area. Results highlight the crucial role of synoptic and mesoscale forcing as well as of convective equilibrium on triggering rainfalls. Two midtropospheric synoptic patterns favor anomalous southwesterly flow toward the area and high potential instability. These findings imply a certain degree of predictability of debris-flow events and can therefore be used to improve existing alert systems.

Corresponding author address: Andrea Toreti, Justus-Liebig University of Giessen, 1 Senckenbergstr., 35390 Giessen, Germany. E-mail: andrea.toreti@geogr.uni-giessen.de
Save
  • Badoux, A., C. Graf, J. Rhyner, R. Kuntner, and B. W. McArdell, 2009: A debris-flow alarm system for the Alpine Illgraben catchment: Design and performance. Nat. Hazards, 49, 517539.

    • Search Google Scholar
    • Export Citation
  • Bardossy, A., and F. Filiz, 2005: Identification of flood producing atmospheric circulation patterns. J. Hydrol., 313, 4857.

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126.

    • Search Google Scholar
    • Export Citation
  • Bollschweiler, M., and M. Stoffel, 2010: Changes and trends in debris-flow frequency since AD 1850: Results from the Swiss Alps. Holocene, 20, 907916.

    • Search Google Scholar
    • Export Citation
  • Bollschweiler, M., M. Stoffel, D. M. Schneuwly, and K. Bourqui, 2008: Traumatic resin ducts in Larix decidua stems impacted by debris flows. Tree Physiol., 28, 255263.

    • Search Google Scholar
    • Export Citation
  • Buzzi, A., N. Tartaglione, and P. Malguzzi, 1998: Numerical simulations of the 1994 Piedmont flood: Role of orography and moist processes. Mon. Wea. Rev., 126, 23692383.

    • Search Google Scholar
    • Export Citation
  • Cacciamani, C., D. Cesari, F. Grazzini, T. Paccagnella, and M. Pantone, 2000: Numerical simulation of intense precipitation events south of the Alps: Sensitivity to initial conditions and horizontal resolution. Meteor. Atmos. Phys., 72, 147159.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Done, J. M., G. C. Craig, S. L. Gray, P. A. Clark, and M. E. B. Gray, 2006: Mesoscale simulations of organized convection: Importance of convective equilibrium. Quart. J. Roy. Meteor. Soc., 132, 737756.

    • Search Google Scholar
    • Export Citation
  • Ferretti, R., S. Low-Nam, and R. Rotunno, 2000: Numerical simulations of the Piedmont flood of 4–6 November 1994. Tellus, 52A, 162180.

    • Search Google Scholar
    • Export Citation
  • GLOBE Task Team, 1999: Global Land One-kilometer Base Elevation (GLOBE): Digital elevation model, version 1.0. D. A. Hastings and P. K. Dunbar, Eds., NOAA National Geophysical Data Center Key to Geophys. Records Doc. 34, 147 pp. [Available online at http://www.ngdc.noaa.gov/mgg/topo/report/globedocumentationmanual.pdf.]

  • Jacobeit, J., A. Philipp, and M. Nonnenmacher, 2006: Atmospheric circulation dynamics linked with prominent discharge events in Central Europe. Hydrol. Sci. J., 51, 946965.

    • Search Google Scholar
    • Export Citation
  • Kaufman, L., and P. J. Rousseeuw, 1990: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, 368 pp.

  • Krishna, K., and M. Narasimha-Murty, 1999: Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern., 29B, 433439.

  • Krivobokova, T., and G. Kauermann, 2007: A note on penalized spline smoothing with correlated errors. J. Amer. Stat. Assoc., 102, 13281337.

    • Search Google Scholar
    • Export Citation
  • Marchi, L., M. Cavalli, M. Sangati, and M. Borga, 2009: Hydrometeorological controls and erosive response of an extreme Alpine debris flow. Hydrol. Processes, 23, 27142727.

    • Search Google Scholar
    • Export Citation
  • Massacand, A. C., H. Wernly, and H. C. Davis, 1998: Heavy precipitation on the Alpine southside: An upper-level precursor. Geophys. Res. Lett., 25, 14351438.

    • Search Google Scholar
    • Export Citation
  • Molini, L., A. Parodi, N. Rebora, and G. C. Craig, 2011: Classifying severe rainfall events over Italy by hydrometeorological and dynamical criteria. Quart. J. Roy. Meteor. Soc., 137, 148154.

    • Search Google Scholar
    • Export Citation
  • Petrow, T., J. Zimmer, and B. Merz, 2009: Changes in the flood hazard in Germany through changing frequency and persistence of circulation patterns. Nat. Hazards Earth Syst. Sci., 9, 14091423.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., V. Pavan, and F. Molteni, 2001: Wintertime variability of Mediterranean precipitation and its links with large-scale circulation anomalies. Climate Dyn., 17 (5–6), 457466.

    • Search Google Scholar
    • Export Citation
  • Schneuwly-Bollschweiler, M., and M. Stoffel, 2012: Hydrometeorological triggers of periglacial debris flows in the Zermatt valley (Switzerland) since 1864. J. Geophys. Res., 117, F02033, doi:10.1029/2011JF002262.

    • Search Google Scholar
    • Export Citation
  • Schölkopf, B., and A. J. Smola, 2002: Learning with Kernels. MIT Press, 626 pp.

  • Stoffel, M., and M. Bollschweiler, 2008: Tree-ring analysis in natural hazards research—An overview. Nat. Hazards Earth Sys., 8, 187202.

    • Search Google Scholar
    • Export Citation
  • Stoffel, M., D. Conus, M. A. Grichting, I. Lièvre, and G. Maître, 2008: Unraveling the patterns of late Holocene debris-flow activity on a cone in the Swiss Alps: Chronology, environment and implications for the future. Global Planet. Change, 60, 222234.

    • Search Google Scholar
    • Export Citation
  • Stoffel, M., M. Bollschweiler, and M. Beniston, 2011: Rainfall characteristics for periglacial debris flows in the Swiss Alps: Past incidences—Potential future evolutions. Climatic Change, 105, 263280.

    • Search Google Scholar
    • Export Citation
  • Stucki, P., R. Rickli, S. Brönnimann, O. Martius, H. Wanner, D. Grebner, and J. Luterbacher, 2012: Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868. Meteor. Z., 21, 531550.

    • Search Google Scholar
    • Export Citation
  • VanDine, D. F., and M. Bovis, 2002: History and goals of Canadian debris flow research, a review. Nat. Hazards, 26, 6982.

  • Wüest, M., C. Frei, A. Altenhoff, M. Hagen, M. Litschi, and C. Schär, 2010: A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int. J. Climatol., 30, 17641775.

    • Search Google Scholar
    • Export Citation
  • Xoplaki, E., J. F. González-Rouco, J. Luterbacher, and H. Wanner, 2004: Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends. Climate Dyn., 23, 6378.

    • Search Google Scholar
    • Export Citation
  • Zimmer, M., G. C. Craig, C. Keil, and H. Wernli, 2011: Classification of precipitation events with a convective response timescale and their forecasting characteristics. Geophys. Res. Lett., 38, L05802, doi:10.1029/2010GL046199.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 508 271 105
PDF Downloads 143 41 0