Estimation of Ground-Level Reflectivity Factor in Operational Weather Radar Networks Using VPR-Based Correction Ensembles

Jarmo Koistinen Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Jarmo Koistinen in
Current site
Google Scholar
PubMed
Close
and
Heikki Pohjola Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Heikki Pohjola in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An operational method is presented that corrects the bias of radar-based quantitative precipitation estimations (QPE) in radar networks that is due to the vertical profile of reflectivity (VPR) factor. It is used in both rain and snowfall. Measured average VPRs are obtained from the volume scans of each radar at ranges of 2–40 km. At each radar, two time ensembles of the bias estimates are made use of: the first ensemble contains 0–24 members at each range gate, calculated by beam convolution from the measured VPRs at 15-min intervals during the most recent 6 h. The second ensemble similarly contains 24 members calculated from parameterized climatological VPRs. In each scan the precipitation type classification and the climatological VPR are matched with the freezing level obtained from a numerical weather prediction model. The members of the two ensembles are weighted for both time lapse and quality and are then combined. At each composite grid point, the value of the networked VPR correction is then determined as a distance-weighted mean of the time ensembles of biases from all radars located closer than 300 km. In the absence of calibration errors, the resulting estimate of the reflectivity factor at ground level Ze is a seamless continuous field. As verified by radar–radar and radar–gauge comparisons in the Finnish network of eight C-band Doppler radars, the method efficiently reduces the range-dependent bias in QPE. For example, at radar ranges of 141–219 km, the average bias in the ground level Ze was −8.7 and 1.2 dB before and after the VPR correction, respectively.

Denotes Open Access content.

Corresponding author address: Jarmo Koistinen, Finnish Meteorological Institute, P.O. Box 503, FIN-00101 Helsinki, Finland. E-mail: jarmo.koistinen@fmi.fi

Abstract

An operational method is presented that corrects the bias of radar-based quantitative precipitation estimations (QPE) in radar networks that is due to the vertical profile of reflectivity (VPR) factor. It is used in both rain and snowfall. Measured average VPRs are obtained from the volume scans of each radar at ranges of 2–40 km. At each radar, two time ensembles of the bias estimates are made use of: the first ensemble contains 0–24 members at each range gate, calculated by beam convolution from the measured VPRs at 15-min intervals during the most recent 6 h. The second ensemble similarly contains 24 members calculated from parameterized climatological VPRs. In each scan the precipitation type classification and the climatological VPR are matched with the freezing level obtained from a numerical weather prediction model. The members of the two ensembles are weighted for both time lapse and quality and are then combined. At each composite grid point, the value of the networked VPR correction is then determined as a distance-weighted mean of the time ensembles of biases from all radars located closer than 300 km. In the absence of calibration errors, the resulting estimate of the reflectivity factor at ground level Ze is a seamless continuous field. As verified by radar–radar and radar–gauge comparisons in the Finnish network of eight C-band Doppler radars, the method efficiently reduces the range-dependent bias in QPE. For example, at radar ranges of 141–219 km, the average bias in the ground level Ze was −8.7 and 1.2 dB before and after the VPR correction, respectively.

Denotes Open Access content.

Corresponding author address: Jarmo Koistinen, Finnish Meteorological Institute, P.O. Box 503, FIN-00101 Helsinki, Finland. E-mail: jarmo.koistinen@fmi.fi
Save
  • Andrieu, H., and J. D. Creutin, 1995: Identification of vertical profiles of reflectivity for hydrological application using an inverse method. Part I: Formulation. J. Appl. Meteor., 34, 225239, doi:10.1175/1520-0450(1995)034<0225:IOVPOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observations of the Atmosphere. University of Chicago Press, 324 pp.

  • Bellon, A., G. W. Lee, and I. Zawadzki, 2005: Error statistics in VPR corrections in stratiform precipitation. J. Appl. Meteor., 44, 9981015, doi:10.1175/JAM2253.1.

    • Search Google Scholar
    • Export Citation
  • Berne, A., G. Delrieu, H. Andrieu, and J.-D. Creutin, 2004: Influence of the vertical profile of reflectivity on radar-estimated rain rates at short time steps. J. Hydrometeor., 5, 296310, doi:10.1175/1525-7541(2004)005<0296:IOTVPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and J. Joss, 2002: Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J. Appl. Meteor., 41, 542557, doi:10.1175/1520-0450(2002)041<0542:MPTERP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and J. Joss, 2004: Operational measurement of precipitation in mountainous terrain. Weather Radar: Principles and Advanced Applications, P. Meischner, Ed., Springer, 52–77, doi:10.1007/978-3-662-05202-0_2.

  • Germann, U., M. Berenguer, D. Sempere-Torres, and M. Zappa, 2009: REAL—Ensemble radar precipitation estimation for hydrology in a mountainous region. Quart. J. Roy. Meteor. Soc., 135, 445456, doi:10.1002/qj.375.

    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp. [Available online at http://glossary.ametsoc.org/wiki/Main_Page.]

  • Harrison, D. L., S. Driscoll, and M. Kitchen, 2000: Improving precipitation estimates from weather radar using quality control and correction techniques. Meteor. Appl.,7, 135–144, doi:10.1017/S1350482700001468.

  • Huuskonen, A., 2001: A method for monitoring the calibration and pointing accuracy of a radar network. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P1.4. [Available online at https://ams.confex.com/ams/30radar/webprogram/Paper21379.html.]

  • Huuskonen, A., M. Kurri, and J. Koistinen, 2009: Harmonized production practices for volume data, low level reflectivity and weather radar wind profile. EUMETNET Tech. Rep., 46 pp. [Available online at www.eumetnet.eu/sites/default/files/OPERA_2008_06_ProductionPractices.pdf.]

  • Joss, J., and A. Waldvogel, 1990: Precipitation measurement and hydrology: A review. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, Amer. Meteor. Soc., 577–606.

  • Joss, J., and R. Lee, 1995: The application of radar–gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor., 34, 26122630, doi:10.1175/1520-0450(1995)034<2612:TAORCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., 1997: Towards improved radar estimates of surface precipitation at long range. Quart. J. Roy. Meteor. Soc., 123, 145163, doi:10.1002/qj.49712353706.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range, and orographic growth in widespread precipitation. Quart. J. Roy. Meteor. Soc., 120, 12311254, doi:10.1002/qj.49712051906.

    • Search Google Scholar
    • Export Citation
  • Koistinen, J., 1991: Operational correction of radar rainfall errors due to vertical profile of reflectivity. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 91–96.

  • Koistinen, J., 1992: Operational correction of radar rainfall errors due to vertical profile. Proc. 2nd Int. Symp. on Hydrological Applications of Weather Radar, Hannover, Germany, University of Hannover, 123132.

  • Koistinen, J., and E. Saltikoff, 1999: Experience of customer products of accumulated snow, sleet and rain. COST 75 Int. Seminar on Advanced Weather Radar Systems, Locarno, Switzerland, European Cooperation in Science and Technology, 397–406.

  • Koistinen, J., D. B. Michelson, H. Hohti, and M. Peura, 2004: Operational measurement of precipitation in cold climates. Weather Radar: Principles and Advanced Applications, P. Meischner, Ed., Springer, 78–114, doi:10.1007/978-3-662-05202-0_3.

  • Lauri, T., J. Koistinen, and D. Moisseev, 2012: Advection-based adjustment of radar measurements. Mon. Wea. Rev., 140, 10141022, doi:10.1175/MWR-D-11-00045.1.

    • Search Google Scholar
    • Export Citation
  • Marzano, F., G. Vulpiani, and E. Picciotti, 2004: Rain field and reflectivity vertical profile reconstruction from C-band radar volumetric data. Trans. Geosci. Remote Sens., 42, 10331046, doi:10.1109/TGRS.2003.820313.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M. P., and A. J. Illingworth, 2003: Comparison of model-derived and radar-observed freezing-level heights: Implications for vertical reflectivity profile-correction schemes. Quart. J. Roy. Meteor. Soc., 129, 8396, doi:10.1256/qj.02.19.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–534.

  • Pohjola, H., and J. Koistinen, 2002: Diagnostics of reflectivity profiles at the radar sites. Preprints, Second European Conf. on Radar Meteorology, Delft, Netherlands, European Meteorological Society, 233–237.

  • Qi, Y., J. Zhang, P. Zhang, and Q. Cao, 2013: VPR correction of bright band effect in radar QPEs using polarimetric radar observations. J. Geophys. Res. Atmos., 118, 36273633, doi:10.1002/jgrd.50364.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., M. Dixon, S. Vasiloff, F. Hage, S. Knight, J. Vivekanandan, and M. Xu, 2003: Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. J. Appl. Meteor., 42, 2036, doi:10.1175/1520-0450(2003)042<0020:SNUART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.

  • Saltikoff, E., A. Huuskonen, H. Hohti, J. Koistinen, and H. Järvinen, 2010: Quality assurance in the FMI Doppler weather radar network. Boreal Environ. Res., 15, 579594.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Diezma, R., I. Zawadzki, and D. Sempere-Torres, 2000: Identification of the bright band through the analysis of volumetric radar data. J. Geophys. Res., 105, 22252236, doi:10.1029/1999JD900310.

    • Search Google Scholar
    • Export Citation
  • Seo, D.-J., J. P. Breidenbach, R. A. Fulton, D. Miller, and T. O’Bannon, 2000: Real-time adjustment of range-dependent bias in WSR-88D rainfall data due to nonuniform vertical profile of reflectivity. J. Hydrometeor., 1, 222240, doi:10.1175/1525-7541(2000)001<0222:RTAORD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sigmet, Inc., 1999: IRIS/Open user's manual, version 7.12, Sigmet Rep., 381 pp.

  • Smith, C., 1986: The reduction of errors caused by bright bands in quantitative rainfall measurements using radar. J. Atmos. Oceanic Technol., 3, 129141, doi:10.1175/1520-0426(1986)003<0129:TROECB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tabary, P., 2007: The new French operational rainfall product. Part 1: Methodology. Wea. Forecasting, 22, 393408, doi:10.1175/WAF1004.1.

    • Search Google Scholar
    • Export Citation
  • Unden, P., and Coauthors, 2002: HIRLAM-5 scientific documentation. SMHI Tech. Rep., 144 pp.

  • Vignal, B., and W. Krajewski, 2001: Large-sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimates. J. Hydrometeor., 2, 490504, doi:10.1175/1525-7541(2001)002<0490:LSEOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vignal, B., H. Andrieu, and J. D. Creutin, 1999: Identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteor., 38, 12141228, doi:10.1175/1520-0450(1999)038<1214:IOVPOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vignal, B., G. Galli, J. Joss, and U. Germann, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct precipitation estimates. J. Appl. Meteor., 39, 17151726, doi:10.1175/1520-0450-39.10.1715.

    • Search Google Scholar
    • Export Citation
  • Xu, X., K. Howard, and J. Zhang, 2008: An automated radar technique for the identification of tropical precipitation. J. Hydrometeor., 9, 885902, doi:10.1175/2007JHM954.1.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1984: Factors affecting the precision of radar measurements of rain. Preprints, 22nd Int. Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 251–256.

  • Zhang, J., and Y. Qi, 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. J. Hydrometeor., 11, 11571171, doi:10.1175/2010JHM1201.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 431 89 10
PDF Downloads 347 71 9