Investigation of Low-Cloud Characteristics Using Mesoscale Numerical Model Data for Improvement of Fog-Detection Performance by Satellite Remote Sensing

Haruma Ishida Graduate School of Science and Engineering, Yamaguchi University, Ube, Japan

Search for other papers by Haruma Ishida in
Current site
Google Scholar
PubMed
Close
,
Kentaro Miura Graduate School of Science and Engineering, Yamaguchi University, Ube, Japan

Search for other papers by Kentaro Miura in
Current site
Google Scholar
PubMed
Close
,
Teruaki Matsuda Graduate School of Science and Engineering, Yamaguchi University, Ube, Japan

Search for other papers by Teruaki Matsuda in
Current site
Google Scholar
PubMed
Close
,
Kakuji Ogawara Graduate School of Science and Engineering, Yamaguchi University, Ube, Japan

Search for other papers by Kakuji Ogawara in
Current site
Google Scholar
PubMed
Close
,
Azumi Goto Japan Weather Association, Tokyo, Japan

Search for other papers by Azumi Goto in
Current site
Google Scholar
PubMed
Close
,
Kuniaki Matsuura Japan Weather Association, Tokyo, Japan

Search for other papers by Kuniaki Matsuura in
Current site
Google Scholar
PubMed
Close
,
Yoshiko Sato Japan Weather Association, Tokyo, Japan

Search for other papers by Yoshiko Sato in
Current site
Google Scholar
PubMed
Close
, and
Takashi Y. Nakajima Research and Information Center, Tokai University, Tokyo, Japan

Search for other papers by Takashi Y. Nakajima in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The comprehensive relationship between meteorological conditions and whether low water cloud touches the surface, particularly at sea, is examined with the goal of improving low-cloud detection by satellite. Gridpoint-value data provided by an operational mesoscale model with integration of Multifunction Transport Satellite-2 data can provide sufficient data for statistical analyses to find general parameters that can discern whether low clouds touch the surface, compensating for uncertainty due to the scarcity of observation sites at sea and the infrequent incidence of fog. The analyses reveal that surface-touching low clouds tend to have lower cloud-top heights than those not touching the surface, although the frequency distribution of cloud-top height differs by season. The bottom of the Γ > Γm layer (where Γ and Γm are the vertical gradient and the moist-adiabatic lapse rate of the potential temperature, respectively) with surface-touching low-cloud layers tends to be very low or almost attached to the surface. In contrast, the tops of low-cloud layers not touching the surface tend to occur near the bottom of the Γ > Γm layer. Mechanisms to correlate these meteorological conditions with whether low clouds touch the surface are inferred from investigations into the vertical structure of equivalent potential temperature. These results indicate that the temperature difference between cloud-top height and the surface can be an appropriate parameter to infer whether low clouds touch the surface. It is also suggested that only a little addition of meteorological ancillary data, such as the forecast sea surface temperature, to satellite data allows successful performance of the discrimination.

Corresponding author address: H. Ishida, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwa-dai, Ube, Yamaguchi 755-8611, Japan. E-mail: ishidah@yamaguchi-u.ac.jp

Abstract

The comprehensive relationship between meteorological conditions and whether low water cloud touches the surface, particularly at sea, is examined with the goal of improving low-cloud detection by satellite. Gridpoint-value data provided by an operational mesoscale model with integration of Multifunction Transport Satellite-2 data can provide sufficient data for statistical analyses to find general parameters that can discern whether low clouds touch the surface, compensating for uncertainty due to the scarcity of observation sites at sea and the infrequent incidence of fog. The analyses reveal that surface-touching low clouds tend to have lower cloud-top heights than those not touching the surface, although the frequency distribution of cloud-top height differs by season. The bottom of the Γ > Γm layer (where Γ and Γm are the vertical gradient and the moist-adiabatic lapse rate of the potential temperature, respectively) with surface-touching low-cloud layers tends to be very low or almost attached to the surface. In contrast, the tops of low-cloud layers not touching the surface tend to occur near the bottom of the Γ > Γm layer. Mechanisms to correlate these meteorological conditions with whether low clouds touch the surface are inferred from investigations into the vertical structure of equivalent potential temperature. These results indicate that the temperature difference between cloud-top height and the surface can be an appropriate parameter to infer whether low clouds touch the surface. It is also suggested that only a little addition of meteorological ancillary data, such as the forecast sea surface temperature, to satellite data allows successful performance of the discrimination.

Corresponding author address: H. Ishida, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwa-dai, Ube, Yamaguchi 755-8611, Japan. E-mail: ishidah@yamaguchi-u.ac.jp
Save
  • Ahn, M.-H., E.-H. Shon, and B.-J. Hwang, 2003: A new algorithm for sea fog/stratus detection using GMS-5 IR data. Adv. Atmos. Sci., 20, 899913, doi:10.1007/BF02915513.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., D. A. Randall, and S. Nicholls, 1988: Observations of marine stratocumulus cloud during FIRE. Bull. Amer. Meteor. Soc., 69, 618626, doi:10.1175/1520-0477(1988)069<0618:OOMSCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and R. Boers, 1990: A cloudiness transition in a marine boundary layer. J. Atmos. Sci., 47, 14801497, doi:10.1175/1520-0469(1990)047<1480:ACTIAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., C. S. Bretherton, and E. Kliner, 1995: Relation between boundary-layer structure and cloudiness at the R/V Valdivia during ASTEX. J. Atmos. Sci., 52, 27522762, doi:10.1175/1520-0469(1995)052<2752:RBMBLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cermak, J., and J. Bendix, 2008: A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res., 87, 279292, doi:10.1016/j.atmosres.2007.11.009.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 1995: Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Wea. Forecasting, 10, 606619, doi:10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., and I. Gultepe, 2007: Inferring low cloud base heights at night for aviation using satellite infrared and surface temperature data. Pure Appl. Geophys., 164, 11931205, doi:10.1007/s00024-007-0214-7.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., M. Pagowski, and J. Reid, 2007a: A satellite-based fog detection scheme using screen air temperature. Wea. Forecasting, 22, 444456, doi:10.1175/WAF1011.1.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2007b: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 11211159, doi:10.1007/s00024-007-0211-x.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2009: The Fog Remote Sensing and Modeling field project. Bull. Amer. Meteor. Soc., 90, 341359, doi:10.1175/2008BAMS2354.1.

    • Search Google Scholar
    • Export Citation
  • Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J. Geophys. Res., 114, D07206, doi:10.1029/2008JD010710.

    • Search Google Scholar
    • Export Citation
  • Ishida, H., K. Miura, T. Matsuda, K. Ogawara, A. Goto, K. Matsuura, Y. Sato, and T. Y. Nakajima, 2014: Scheme for detection of low clouds from geostationary weather satellite imagery. Atmos. Res., 143, 250264, doi:10.1016/j.atmosres.2014.02.015.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y., 1997: Airmass transformation of the yamase air-flow in the summer of 1993. J. Meteor. Soc. Japan, 75, 737751. [Available online at http://www.st.hirosaki-u.ac.jp/~kodama/JMSJkodama1997.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kodama, Y., Y. Tomita, and S. Asano, 2009: Air mass transformation along trajectories of airflow and its relation to vertical structures of the maritime atmosphere and clouds in yamase events. J. Meteor. Soc. Japan, 87, 665685, doi:10.2151/jmsj.87.665.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., J. M. Lewis, W. T. Thompson, C. E. Dorman, and J. A. Businger, 2001: Transition of stratus into fog along the California coast: Observations and modeling. J. Atmos. Sci., 58, 17141731, doi:10.1175/1520-0469(2001)058<1714:TOSIFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., C. E. Dorman, J. M. Lewis, J. G. Hudson, E. M. Wilcox, and A. Torregrosa, 2014: Marine fog: A review. Atmos. Res., 143, 142175, doi:10.1016/j.atmosres.2013.12.012.

    • Search Google Scholar
    • Export Citation
  • Lee, T. F., F. J. Turk, and K. Richardson, 1997: Stratus and fog products using GOES-89 3.9-μm data. Wea. Forecasting, 12, 664677, doi:10.1175/1520-0434(1997)012<0664:SAFPUG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewis, J., D. Koracin, R. Rabin, and J. Businger, 2003: Sea fog off the California coast: Viewed in the context of transient weather systems. J. Geophys. Res., 108, 4457, doi:10.1029/2002JD002833.

    • Search Google Scholar
    • Export Citation
  • Lewis, J., D. Koracin, and K. T. Redmond, 2004: Sea fog research in the United Kingdom and United States: A historical essay including outlook. Bull. Amer. Meteor. Soc., 85, 395408, doi:10.1175/BAMS-85-3-395.

    • Search Google Scholar
    • Export Citation
  • Muroi, C., T. Fujita, and Y. Ishikawa, 2008: Hourly analysis at the Japan Meteorological Agency (in Japanese).Tenki, 55, 401408.

  • Norris, J. R., 1998a: Low cloud type over the ocean from surface observations. Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. J. Climate, 11, 369382, doi:10.1175/1520-0442(1998)011<0369:LCTOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1998b: Low cloud type over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11, 383403, doi:10.1175/1520-0442(1998)011<0383:LCTOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of low clouds in summertime atmosphere–ocean interactions over the North Pacific. J. Climate, 11, 24822490, doi:10.1175/1520-0442(1998)011<2482:ROLCIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Coakley Jr., C. W. Fairall, R. A. Kropfli, and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65, 12901301, doi:10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. P., and D. Koračin, 1992: Radiative transfer and turbulence in the cloud-topped marine atmospheric boundary layer. J. Atmos. Sci., 49, 14731486, doi:10.1175/1520-0469(1992)049<1473:RTATIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saito, K., T. Fujita, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, and S. Kumagai, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, doi:10.1175/MWR3120.1.

    • Search Google Scholar
    • Export Citation
  • Saito, K., J. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Japan, 85B, 271304, doi:10.2151/jmsj.85B.271.

    • Search Google Scholar
    • Export Citation
  • Underwood, S. J., G. P. Ellrod, and A. L. Kuhnert, 2004: A multiple-case analysis of nocturnal radiation-fog development off California utilizing GOES nighttime fog product. J. Appl. Meteor., 43, 297311, doi:10.1175/1520-0450(2004)043<0297:AMAONR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., W. B. Rossow, T. Uttal, and M. Rozendaal, 1999: Variability of cloud vertical structure during ASTEX observed from a combination of rawinsonde, radar, ceilometer, and satellite. Mon. Wea. Rev., 127, 24842502, doi:10.1175/1520-0493(1999)127<2484:VOCVSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 217 80 24
PDF Downloads 135 32 2