A Case Study of Radar Observations and WRF LES Simulations of the Impact of Ground-Based Glaciogenic Seeding on Orographic Clouds and Precipitation. Part I: Observations and Model Validations

Xia Chu Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Xia Chu in
Current site
Google Scholar
PubMed
Close
,
Lulin Xue Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
,
Bart Geerts Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Roy Rasmussen Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy Rasmussen in
Current site
Google Scholar
PubMed
Close
, and
Daniel Breed Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Daniel Breed in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Profiling airborne radar data and accompanying large-eddy-simulation (LES) modeling are used to examine the impact of ground-based glaciogenic seeding on cloud and precipitation in a shallow stratiform orographic winter storm. This storm occurred on 18 February 2009 over a mountain in Wyoming. The numerical simulations use the Weather Research and Forecasting (WRF) Model in LES mode with horizontal grid spacings of 300 and 100 m in a domain covering the entire mountain range, and a glaciogenic seeding parameterization coupled with the Thompson microphysics scheme. A series of non-LES simulations at 900-m resolution, each with different initial/boundary conditions, is validated against sounding, cloud, and precipitation data. The LES runs then are driven by the most representative 900-m non-LES simulation. The 100-m LES results compare reasonably well to the vertical-plane radar data. The modeled vertical-motion field reveals a turbulent boundary layer and gravity waves above this layer, as observed. The storm structure also validates well, but the model storm thins and weakens more rapidly than is observed. Radar reflectivity frequency-by-altitude diagrams suggest a positive seeding effect, but time- and space-matched model reflectivity diagrams only confirm this in a relative sense, in comparison with the trend in the control region upwind of seeding generators, and not in an absolute sense. A model sensitivity run shows that in this case natural storm weakening dwarfs the seeding effect, which does enhance snow mass and snowfall. Since the kinematic and microphysical structure of the storm is simulated well, future Part II of this study will examine how glaciogenic seeding impacts clouds and precipitation processes within the LES.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Xia Chu, Dept. of Atmospheric Science, 1000 E. University Ave., University of Wyoming, Laramie, WY 82071. E-mail: xchu1@uwyo.edu

Abstract

Profiling airborne radar data and accompanying large-eddy-simulation (LES) modeling are used to examine the impact of ground-based glaciogenic seeding on cloud and precipitation in a shallow stratiform orographic winter storm. This storm occurred on 18 February 2009 over a mountain in Wyoming. The numerical simulations use the Weather Research and Forecasting (WRF) Model in LES mode with horizontal grid spacings of 300 and 100 m in a domain covering the entire mountain range, and a glaciogenic seeding parameterization coupled with the Thompson microphysics scheme. A series of non-LES simulations at 900-m resolution, each with different initial/boundary conditions, is validated against sounding, cloud, and precipitation data. The LES runs then are driven by the most representative 900-m non-LES simulation. The 100-m LES results compare reasonably well to the vertical-plane radar data. The modeled vertical-motion field reveals a turbulent boundary layer and gravity waves above this layer, as observed. The storm structure also validates well, but the model storm thins and weakens more rapidly than is observed. Radar reflectivity frequency-by-altitude diagrams suggest a positive seeding effect, but time- and space-matched model reflectivity diagrams only confirm this in a relative sense, in comparison with the trend in the control region upwind of seeding generators, and not in an absolute sense. A model sensitivity run shows that in this case natural storm weakening dwarfs the seeding effect, which does enhance snow mass and snowfall. Since the kinematic and microphysical structure of the storm is simulated well, future Part II of this study will examine how glaciogenic seeding impacts clouds and precipitation processes within the LES.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Xia Chu, Dept. of Atmospheric Science, 1000 E. University Ave., University of Wyoming, Laramie, WY 82071. E-mail: xchu1@uwyo.edu
Save
  • Black, M., and J. King, 2009: The Atlas of Water: Mapping the World’s Most Critical Resource. 2nd ed. University of California Press, 128 pp.

  • Breed, D., R. Rasmussen, B. Lawrence, B. Boe, T. Deshler, and C. Weeks, 2014: Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP). J. Appl. Meteor. Climatol., 53, 282299, doi:10.1175/JAMC-D-13-0128.1.

    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., 1999: A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Amer. Meteor. Soc., 80, 805820, doi:10.1175/1520-0477(1999)080<0805:AROCSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments. J. Appl. Meteor. Climatol., 45, 63–86, doi:10.1175/JAM2322.1.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., and U. Löhnert, 2003: Accuracy of cloud liquid water path from ground-based microwave radiometry 2. Sensor accuracy and synergy. Radio Sci., 38, 8042, doi:10.1029/2002RS002634.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and S. Haimov, 2006: A high-resolution dual-Doppler technique for fixed multi-antenna airborne radar. IEEE Trans. Geosci. Remote Sens., 44, 34753489, doi:10.1109/TGRS.2006.881745.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1995: Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos. Res., 38, 6399, doi:10.1016/0169-8095(94)00088-U.

    • Search Google Scholar
    • Export Citation
  • Garstang, M., R. Bruintjes, R. Serafin, H. Orville, B. Boe, W. Cotton, and J. Warburton, 2005: Weather modification: Finding common ground. Bull. Amer. Meteor. Soc., 86, 647655, doi:10.1175/BAMS-86-5-647.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, Y. Yang, R. Rasmussen, and D. Breed, 2010: An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds. J. Atmos. Sci., 67, 32863302, doi:10.1175/2010JAS3496.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and Y. Yang, 2011: Boundary layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci., 68, 23442365, doi:10.1175/JAS-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2013: The AgI Seeding Cloud Impact Investigation (ASCII) campaign 2012: Overview and preliminary results. J. Wea. Modif., 45, 2443. [Available online at http://www.weathermodification.org/publications/index.php/JWM/article/view/121/pdf.]

    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., and C. J. Todd, 1978: A model of hygroscopic seeding in cumulus clouds. J. Appl. Meteor., 17, 17581768, doi:10.1175/1520-0450(1978)017<1758:AMOHSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., K. Ikeda, G. Thompson, R. Rasmussen, and J. Dudhia, 2011: High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: Sensitivity to physics parameterizations. Mon. Wea. Rev., 139, 35333553, doi:10.1175/MWR-D-11-00009.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

    • Search Google Scholar
    • Export Citation
  • Mirocha, J., B. Kosovic, and G. Kirkil, 2014: Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the Weather Research and Forecasting Model. Mon. Wea. Rev., 142, 806831, doi:10.1175/MWR-D-13-00064.1.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2003: Critical Issues in Weather Modification Research. National Academies Press, 144 pp.

  • Ogura, Y., 1963: The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: A numerical calculation. J. Atmos. Sci., 20, 407424, doi:10.1175/1520-0469(1963)020<0407:TEOAMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, H. D., 1965: A numerical study of the initiation of cumulus clouds over mountainous terrain. J. Atmos. Sci., 22, 684699, doi:10.1175/1520-0469(1965)022<0684:ANSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., and G. Vali, 2011: Evaluation of collocated measurements of radar reflectivity and particle sizes in ice clouds. J. Appl. Meteor. Climatol., 50, 21042119, doi:10.1175/JAMC-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2001: Weather Support to Deicing Decision Making (WSDDM): A winter weather nowcasting system. Bull. Amer. Meteor. Soc., 82, 579595, doi:10.1175/1520-0477(2001)082<0579:WSTDDM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., M. Dixon, S. Vasiloff, F. Hage, S. Knight, J. Vivekanandan, and M. Xu, 2003: Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. J. Appl. Meteor., 42, 2036, doi:10.1175/1520-0450(2003)042<0020:SNUART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., 1946: The production of ice crystals in a cloud of supercooled water droplets. Science, 104, 457459, doi:10.1126/science.104.2707.457.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1971: 1968 Florida Cumulus Seeding Experiment: Numerical model results. Mon. Wea. Rev., 99, 87118, doi:10.1175/1520-0493(1971)099<0087:FCSENM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Super, A. B., B. A. Boe, J. A. Heimbach, J. T. McPartland, and G. Langer, 2010: Comparison of silver iodide outputs from two different generators and solutions measured by acoustic ice nucleus counters. J. Wea. Modif., 42, 4960.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1947: The nucleation of ice formation by silver iodide. J. Appl. Phys., 18, 593595, doi:10.1063/1.1697813.

  • Wang, Y., and B. Geerts, 2009: Estimating the evaporative cooling bias of an airborne reverse flow thermometer. J. Atmos. Oceanic Technol., 26, 321, doi:10.1175/2008JTECHA1127.1.

    • Search Google Scholar
    • Export Citation
  • Ware, R., F. Solheim, R. Carpenter, J. Gueldner, J. Liljegren, T. Nehrkorn, and F. Vandenberghe, 2003: A multi-channel radiometric profiler of temperature, humidity and cloud liquid. Radio Sci.,38, 8079, doi:10.1029/2002RS002856.

  • Weigel, A. P., F. K. Chow, and M. W. Rotach, 2007: On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. Bound.-Layer Meteor., 123, 177199, doi:10.1007/s10546-006-9142-9.

    • Search Google Scholar
    • Export Citation
  • Xue, L., A. Teller, R. M. Rasmussen, I. Geresdi, and Z. Pan, 2010: Effects of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation simulated by a detailed bin microphysical scheme. J. Atmos. Sci., 67, 33363354, doi:10.1175/2010JAS3511.1.

    • Search Google Scholar
    • Export Citation
  • Xue, L., A. Teller, R. M. Rasmussen, I. Geresdi, Z. Pan, and X. Liu, 2012: Effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation. J. Atmos. Sci., 69, 19942010, doi:10.1175/JAS-D-11-098.1.

    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2013a: AgI cloud seeding effects as seen in WRF simulations. Part I: Model description and idealized 2D sensitivity tests. J. Appl. Meteor. Climatol., 52, 14331457, doi:10.1175/JAMC-D-12-0148.1.

    • Search Google Scholar
    • Export Citation
  • Xue, L., S. Tessendorf, E. Nelson, R. Rasmussen, D. Breed, S. Parkinson, P. Holbrook, and D. Blestrud, 2013b: AgI cloud seeding effects as seen in WRF simulations. Part II: 3D real case simulations and sensitivity tests. J. Appl. Meteor. Climatol., 52, 14581476, doi:10.1175/JAMC-D-12-0149.1.

    • Search Google Scholar
    • Export Citation
  • Xue, L., X. Chu, R. Rasmussen, D. Breed, B. Boe, and B. Geerts, 2014: The dispersion of silver iodide particles from ground-based generators over complex terrain. Part II: WRF large-eddy simulations versus observations. J. Appl. Meteor. Climatol., 53, 1342–1361, doi:10.1175/JAMC-D-13-0241.1.

    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1974: A numerical simulation of wintertime, orographic precipitation: Part I. Description of model microphysics and numerical techniques. J. Atmos. Sci., 31, 17351748, doi:10.1175/1520-0469(1974)031<1735:ANSOWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1081 280 29
PDF Downloads 719 213 22