Computation of the Standardized Precipitation Index (SPI) and Its Use to Assess Drought Occurrences in Cameroon over Recent Decades

Guy Merlin Guenang Laboratory for Environmental Modelling and Atmospheric Physics, University of Yaoundé 1, Yaoundé, Cameroon

Search for other papers by Guy Merlin Guenang in
Current site
Google Scholar
PubMed
Close
and
F. Mkankam Kamga Laboratory for Environmental Modelling and Atmospheric Physics, University of Yaoundé 1, Yaoundé, Cameroon

Search for other papers by F. Mkankam Kamga in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The standardized precipitation index (SPI) is computed and analyzed using 55 years of precipitation data recorded in 24 observation stations in Cameroon along with University of East Anglia Climate Research Unit (CRU) spatialized data. Four statistical distribution functions (gamma, exponential, Weibull, and lognormal) are first fitted to data accumulated for various time scales, and the appropriate functions are selected on the basis of the Anderson–Darling goodness-of-fit statistic. For short time scales (up to 6 months) and for stations above 10°N, the gamma distribution is the most frequent choice; below this belt, the Weibull distribution predominates. For longer than 6-month time scales, there are no consistent patterns of fitted distributions. After calculating the SPI in the usual way, operational drought thresholds that are based on an objective method are determined at each station. These thresholds are useful in drought-response decision making. From SPI time series, episodes of severe and extreme droughts are identified at many stations during the study period. Moderate/severe drought occurrences are intra-annual in short time scales and interannual for long time scales (greater than 9 months), usually spanning many years. The SPI calculated from CRU gridded precipitation shows similar results, with some discrepancies at longer scales. Thus, the spatialized dataset can be used to extend such studies to a larger region—especially data-scarce areas.

Corresponding author address: G. M. Guenang, Laboratory for Environmental Modelling and Atmospheric Physics, Dept. of Physics, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon. E-mail: merlin.guenang@yahoo.fr

Abstract

The standardized precipitation index (SPI) is computed and analyzed using 55 years of precipitation data recorded in 24 observation stations in Cameroon along with University of East Anglia Climate Research Unit (CRU) spatialized data. Four statistical distribution functions (gamma, exponential, Weibull, and lognormal) are first fitted to data accumulated for various time scales, and the appropriate functions are selected on the basis of the Anderson–Darling goodness-of-fit statistic. For short time scales (up to 6 months) and for stations above 10°N, the gamma distribution is the most frequent choice; below this belt, the Weibull distribution predominates. For longer than 6-month time scales, there are no consistent patterns of fitted distributions. After calculating the SPI in the usual way, operational drought thresholds that are based on an objective method are determined at each station. These thresholds are useful in drought-response decision making. From SPI time series, episodes of severe and extreme droughts are identified at many stations during the study period. Moderate/severe drought occurrences are intra-annual in short time scales and interannual for long time scales (greater than 9 months), usually spanning many years. The SPI calculated from CRU gridded precipitation shows similar results, with some discrepancies at longer scales. Thus, the spatialized dataset can be used to extend such studies to a larger region—especially data-scarce areas.

Corresponding author address: G. M. Guenang, Laboratory for Environmental Modelling and Atmospheric Physics, Dept. of Physics, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon. E-mail: merlin.guenang@yahoo.fr
Save
  • Ahmad, S., and B. A. Bhat, 2010: Posterior estimates of two parameter exponential distribution using S-PLUS software. J. Reliab. Stat. Stud., 3, 2734. [Available online at http://www.jrss.in/data/323.pdf.]

    • Search Google Scholar
    • Export Citation
  • Anderson, T. W., and D. A. Darling, 1952: Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes. Ann. Math. Stat., 23, 193212, doi:10.1214/aoms/1177729437.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. W., and D. A. Darling, 1954: A test of goodness-of-fit. J. Amer. Stat. Assoc., 49, 765769, doi:10.1080/01621459.1954.10501232.

    • Search Google Scholar
    • Export Citation
  • Bartosova, J., 2006: Logarithmic-normal model of income distribution in the Czech Republic. Austrian J. Stat., 35, 215222. [Available online at http://www.stat.tugraz.at/AJS/ausg062+3/062Bartosov.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bilkova, D., 2012: Lognormal distribution and using L-moment method for estimating its parameters. Int. J. Math. Models Methods Appl. Sci., 6, 3044. [Available online at http://naun.org/main/NAUN/ijmmas/17-079.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bordi, I., and A. Sutera, 2001: Fifty years of precipitation: Some spatially remote teleconnnections. Water Resour. Manage., 15, 247280, doi:10.1023/A:1013353822381.

    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., 2011: Studies of 21st-century precipitation trends over West Africa. Int. J. Climatol., 31, 14151424, doi:10.1002/joc.2180.

    • Search Google Scholar
    • Export Citation
  • Edwards, D. C., and T. B. McKee, 1997: Characteristics of 20th century drought in the United States at multiple time scales. Colorado State University Dept. of Atmospheric Science Climatology Rep. 97-2/Atmospheric Science Paper 634, 174 pp. [Available online at http://ccc.atmos.colostate.edu/edwards.pdf.]

  • Goodrich, G. B., and A. W. Ellis, 2006: Climatological drought in Arizona: An analysis of indicators for guiding the governor’s Drought Task Force. Prof. Geogr., 58, 460469, doi:10.1111/j.1467-9272.2006.00582.x.

    • Search Google Scholar
    • Export Citation
  • Guenang, G. M., and F. Mkankam Kamga, 2012: Onset, retreat and length of the rainy season over Cameroon. Atmos. Sci. Lett., 13, 120127, doi:10.1002/asl.371.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1998: Comparing the Palmer drought index and the standardized precipitation index. J. Amer. Water Resour. Assoc., 34, 113121, doi:10.1111/j.1752-1688.1998.tb05964.x.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35, 311322, doi:10.1111/j.1752-1688.1999.tb03592.x.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hayes, M. J., M. D. Svoboda, D. A. Wilhite, and O. V. Vanyarkho, 1999: Monitoring the 1996 drought using the standardized precipitation index. Bull. Amer. Meteor. Soc., 80, 429438, doi:10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kandji, T. S., L. Verchot, and J. Mackensen, 2006: Climate change and variability in the Sahel region: Impacts and adaptation strategies in the agricultural sector. United Nations Environment Programme/World Agroforestry Centre Rep., 48 pp. [Available online at http://www.unep.org/Themes/Freshwater/Documents/pdf/ClimateChangeSahelCombine.pdf.]

  • Lana, X., C. Serra, and A. Burgueno, 2001: Patterns of monthly rainfall shortage and excess in terms of the standardized precipitation index for Catalonia (NE Spain). Int. J. Climatol., 21, 16691691, doi:10.1002/joc.697.

    • Search Google Scholar
    • Export Citation
  • Livada, I., and V. D. Assimakopoulos, 2007: Spatial and temporal analysis of drought in Greece using the standardized precipitation index (SPI). Theor. Appl. Climatol., 89, 143153, doi:10.1007/s00704-005-0227-z.

    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., and M. A. Saunders, 2002: A drought climatology for Europe. Int. J. Climatol., 22, 15711592, doi:10.1002/joc.846.

  • Manatsa, D., W. Chingombe, H. Matsikwa, and C. H. Matarira, 2008: The superior influence of Darwin Sea level pressure anomalies over ENSO as a simple drought predictor for southern Africa. Theor. Appl. Climatol., 92, 114, doi:10.1007/s00704-007-0315-3.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kliest, 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. of Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179184.

  • Mishra, A. K., and V. R. Desai, 2005: Drought forecasting using stochastic models. J. Stochastic Environ. Res. Risk Assess., 19, 326339, doi:10.1007/s00477-005-0238-4.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829856, doi:10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ntale, H. K., and T. Y. Gan, 2003: Drought indices and their application to East Africa. Int. J. Climatol., 23, 1335–1357, doi:10.1002/joc.931.

    • Search Google Scholar
    • Export Citation
  • Pal, I., and A. Al-Tabbaa, 2011: Assessing seasonal precipitation trends in India using parametric and non-parametric statistical techniques. Theor. Appl. Climatol., 103, 111, doi:10.1007/s00704-010-0277-8.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Dept. of Commerce Weather Bureau Research Paper 45, 65 pp. [Available online at http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.]

  • Panahi, H., and S. Asadi, 2011: Estimation of the Weibull distribution based on Type-II censored samples. Appl. Math. Sci., 5, 25492558.

    • Search Google Scholar
    • Export Citation
  • Penlap, K. E., C. Matulla, H. Von Storch, and F. Mkankam Nkamga, 2004: Downscaling of GCM scenarios to assess precipitation changes in the little rainy season (March-June) in Cameroon. Climate Res., 26, 8596, doi:10.3354/cr026085.

    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., 2009: Developing objective operational definitions for monitoring drought. J. Appl. Meteor. Climatol., 48, 12171229, doi:10.1175/2009JAMC2088.1.

    • Search Google Scholar
    • Export Citation
  • Ross, S. M., 2009: Introduction to Probability and Statistics for Engineers and Scientists. 4th ed. Associated Press, 664 pp.

  • Seiler, R. A., M. Hayes, and L. Bressan, 2002: Using the standardized precipitation index for flood risk monitoring. Int. J. Climatol., 22, 13651376, doi:10.1002/joc.799.

    • Search Google Scholar
    • Export Citation
  • Stephens, M. A., 1970: Use of the Kolmogorov–Smirnov, Cramér–Von Mises and related statistics without extensive tables. J. Roy. Stat. Soc., 32B, 115122. [Available online at http://www.jstor.org/stable/2984408.]

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190. [Available online at http://journals.ametsoc.org/doi/abs/10.1175/1520-0477%282002%29083%3C1181%3ATDM%3E2.3.CO%3B2.]

    • Search Google Scholar
    • Export Citation
  • Szalai, S., and C. Szinell, 2000: Comparison of two drought indices for drought monitoring in Hungary—A case study. Drought and Drought Mitigation in Europe, J. V. Vogt and F. Somma, Eds., Springer, 161–166.

  • Tarhule, A., Z. Saley-Bana, and P. J. Lamb, 2009: A prototype GIS for rainfall monitoring in West Africa. Bull. Amer. Meteor. Soc., 90, 16071614, doi:10.1175/2009BAMS2697.1.

    • Search Google Scholar
    • Export Citation
  • Thom, H. C. S., 1958: A note on the gamma distribution. Mon. Wea. Rev., 86, 117122, doi:10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • UNEP, 2002: African Environment Outlook: Past, Present and Future Perspectives.United Nations Environment Programme, 422 pp. [Available online at http://www.unep.org/dewa/africa/publications/aeo-1/.]

  • Vicente-Serrano, S. M., 2006: Spatial and temporal analysis of droughts in the Iberian Peninsula (1910-2000). Hydrol. Sci. J., 51, 8397, doi:10.1623/hysj.51.1.83.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Begueria, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, doi:10.1175/2009JCLI2909.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Science: An Introduction. Academic Press, 467 pp.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wu, H., M. D. Svoboda, M. J. Hayes, D. A. Wilhite, and F. Wen, 2007: Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int. J. Climatol., 27, 6579, doi:10.1002/joc.1371.

    • Search Google Scholar
    • Export Citation
  • Wu, S.-J., 2002: Estimations of the parameters of the Weibull distribution with progressively censored data. J. Japan Statist. Soc., 32, 155163, doi:10.14490/jjss.32.155.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, N. W. Chaney, J. Sheffield, J. Kam, M. Liang, and K. Guan, 2013: Probabilistic seasonal forecasting of African drought by dynamical models. J. Hydrometeor., 14, 17061720, doi:10.1175/JHM-D-13-054.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., X. Chong-Yu, and Z. Zengxin, 2009: Observed changes of drought/wetness episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index. Theor. Appl. Climatol., 98, 8999, doi:10.1007/s00704-008-0095-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16189 1433 93
PDF Downloads 14044 897 43