Impacts of 4DVAR Assimilation of Airborne Doppler Radar Observations on Numerical Simulations of the Genesis of Typhoon Nuri (2008)

Zhan Li Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Zhan Li in
Current site
Google Scholar
PubMed
Close
,
Zhaoxia Pu Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Zhaoxia Pu in
Current site
Google Scholar
PubMed
Close
,
Juanzhen Sun National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Juanzhen Sun in
Current site
Google Scholar
PubMed
Close
, and
Wen-Chau Lee National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Wen-Chau Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Weather Research and Forecasting Model and its four-dimensional variational data assimilation (4DVAR) system are employed to examine the impact of airborne Doppler radar observations on predicting the genesis of Typhoon Nuri (2008). Electra Doppler Radar (ELDORA) airborne radar data, collected during the Office of Naval Research–sponsored Tropical Cyclone Structure 2008 field experiment, are used for data assimilation experiments. Two assimilation methods are evaluated and compared, namely, the direct assimilation of radar-measured radial velocity and the assimilation of three-dimensional wind analysis derived from the radar radial velocity. Results show that direct assimilation of radar radial velocity leads to better intensity forecasts, as this process enhances the development of convective systems and improves the inner-core structure of Nuri, whereas assimilation of the radar-retrieved wind analysis is more beneficial for tracking forecasts, as it results in improved environmental flows. The assimilation of both the radar-retrieved wind and the radial velocity can lead to better forecasts in both intensity and tracking, if the radial velocity observations are assimilated first and the retrieved winds are then assimilated in the same data assimilation window. In addition, experiments with and without radar data assimilation led to developing and nondeveloping disturbances in numerical simulations of Nuri’s genesis. The improved initial conditions and forecasts from the data assimilation imply that the enhanced midlevel vortex and moisture conditions are favorable for the development of deep convection in the center of the pouch and eventually contribute to Nuri’s genesis. The improved simulations of the convection and associated environmental conditions produce enhanced upper-level warming in the core region and lead to the drop in sea level pressure.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Zhaoxia Pu, Dept. of Atmospheric Sciences, University of Utah, 135 S 1460 E, Rm. 819, Salt Lake City, UT 84112. E-mail: zhaoxia.pu@utah.edu

Abstract

The Weather Research and Forecasting Model and its four-dimensional variational data assimilation (4DVAR) system are employed to examine the impact of airborne Doppler radar observations on predicting the genesis of Typhoon Nuri (2008). Electra Doppler Radar (ELDORA) airborne radar data, collected during the Office of Naval Research–sponsored Tropical Cyclone Structure 2008 field experiment, are used for data assimilation experiments. Two assimilation methods are evaluated and compared, namely, the direct assimilation of radar-measured radial velocity and the assimilation of three-dimensional wind analysis derived from the radar radial velocity. Results show that direct assimilation of radar radial velocity leads to better intensity forecasts, as this process enhances the development of convective systems and improves the inner-core structure of Nuri, whereas assimilation of the radar-retrieved wind analysis is more beneficial for tracking forecasts, as it results in improved environmental flows. The assimilation of both the radar-retrieved wind and the radial velocity can lead to better forecasts in both intensity and tracking, if the radial velocity observations are assimilated first and the retrieved winds are then assimilated in the same data assimilation window. In addition, experiments with and without radar data assimilation led to developing and nondeveloping disturbances in numerical simulations of Nuri’s genesis. The improved initial conditions and forecasts from the data assimilation imply that the enhanced midlevel vortex and moisture conditions are favorable for the development of deep convection in the center of the pouch and eventually contribute to Nuri’s genesis. The improved simulations of the convection and associated environmental conditions produce enhanced upper-level warming in the core region and lead to the drop in sea level pressure.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Zhaoxia Pu, Dept. of Atmospheric Sciences, University of Utah, 135 S 1460 E, Rm. 819, Salt Lake City, UT 84112. E-mail: zhaoxia.pu@utah.edu
Save
  • Bell, M. M., and M. T. Montgomery, 2010: Sheared deep vortical convection in pre-depression Hagupit during TCS08. Geophys. Res. Lett., 37, L06802, doi:10.1029/2009GL042313.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., W.-C. Lee, A. W. Cory, and H. Cai, 2013: A Solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 25092528, doi:10.1175/JAMC-D-12-0283.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 11001124, doi:10.1175/1520-0493(2002)130<1100:NSOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, doi:10.1175/2008JTECHA1156.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys. Discuss., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., P. P. Dodge, and N. F. Griffin, 2008: Automatic quality control and analysis of airborne Doppler data: Real-time applications, and automatically post-processed analyses for research. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., P2B.12. [Available online at http://ams.confex.com/ams/pdfpapers/137969.pdf.]

  • Gao, J., M. Xue, A. Shapiro, Q. Xu, and K. K. Droegemeier, 2001: Three-dimensional simple adjoint velocity retrievals from single-Doppler radar. J. Atmos. Oceanic Technol., 18, 2638, doi:10.1175/1520-0426(2001)018<0026:TDSAVR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, doi:10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239, doi:10.1126/science.1135650.

    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., and Coauthors, 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137, 299314, doi:10.1175/2008MWR2577.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kieu, C. Q., and D.-L. Zhang, 2010: Genesis of Tropical Storm Eugene (2005) from merging vortices associated with ITCZ breakdowns. Part III: Sensitivity to various genesis parameters. J. Atmos. Sci., 67, 17451758, doi:10.1175/2010JAS3227.1.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., 2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci., 70, 542558, doi:10.1175/JAS-D-12-052.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., X. Wang, and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF hybrid ensemble–3DVAR system for the prediction of Hurricane Ike (2008). Mon. Wea. Rev., 140, 35073524, doi:10.1175/MWR-D-12-00043.1.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., J. L. Anderson, and Y.-H. Kuo, 2012: Improved analyses and forecast of Hurricane Ernesto’s genesis using radio occultation data in an ensemble filter assimilation system. Mon. Wea. Rev., 140, 151166, doi:10.1175/MWR-D-11-00024.1.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 12961317, doi:10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2009: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys. Discuss., 9, 19 15919 203, doi:10.5194/acpd-9-19159-2009.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., Z. Wang, and T. J. Dunkerton, 2010: Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm. Atmos. Chem. Phys., 10, 10 80310 827, doi:10.5194/acp-10-10803-2010.

    • Search Google Scholar
    • Export Citation
  • Nolan, D., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Oye, R., C. Mueller, and S. Smith, 1995: Software for translation, visualization, editing and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., and L. Zhang, 2010: Validation of AIRS temperature and moisture profiles over tropical oceans and their impact on numerical simulations of tropical cyclones. J. Geophys. Res., 115, D24114, doi:10.1029/2010JD014258.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, and J. Sun, 2009: Impact of airborne Doppler radar data assimilation on the numerical simulation of intensity changes of Hurricane Dennis near a landfall. J. Atmos. Sci., 66, 33513365, doi:10.1175/2009JAS3121.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, doi:10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and C. López Carrillo, 2011: The vorticity budget of developing typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147163, doi:10.5194/acp-11-147-2011.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and C. López Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, doi:10.1029/2011JD015624.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks, and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/TN–475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Sun, J., and H. Wang, 2013: Radar data assimilation with WRF 4DVAR. Part II: Comparison with 3DVAR for a squall line over the U.S. Great Plains. Mon. Wea. Rev., 141, 22452264, doi:10.1175/MWR-D-12-00169.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and X.-Y. Huang, 2012: TAMDAR observation assimilation in WRF 3DVAR and its impact on Hurricane Ike (2008) forecast. Atmos. Oceanic Sci. Lett., 5, 206211.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X.-Y. Huang, and T. Auligné, 2013: Radar data assimilation with WRF 4DVAR. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 22242244, doi:10.1175/MWR-D-12-00168.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010a: Genesis of pre–Hurricane Felix (2007). Part I: The role of the easterly wave critical layer. J. Atmos. Sci., 67, 17111729, doi:10.1175/2009JAS3420.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010b: Genesis of pre–Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744, doi:10.1175/2010JAS3435.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, C. A., M. M. Bell, and W.-C. Lee, 2009: Automatic quality control of airborne Doppler radar data. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P9.7. [Available online at http://ams.confex.com/ams/pdfpapers/155949.pdf.]

  • Wu, C., K. Chou, Y. Wang, and Y. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 23832395, doi:10.1175/JAS3743.1.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., X. Zhang, C. Davis, J. Tuttle, G. Holland, and P. J. Fitzpatrick, 2009: Experiments of hurricane initialization with airborne Doppler radar data for the Advanced Research Hurricane WRF (AHW) Model. Mon. Wea. Rev., 137, 27582777, doi:10.1175/2009MWR2828.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi:10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and L. Zhu, 2012: Role of upper-level processes in tropical cyclogenesis. Geophys. Res. Lett., 39, L17804, doi:10.1029/2012GL053140.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, doi:10.1175/2009MWR2645.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, doi:10.1029/2011GL048469.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Z. Pu, W.-C. Lee, and Q. Zhao, 2012: The influence of airborne Doppler radar data quality on numerical simulations of a tropical cyclone. Wea. Forecasting, 27, 231239, doi:10.1175/WAF-D-11-00028.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., M. Zupanski, M.-J. Kim, and J. A. Knaff, 2013: Assimilating AMSU-A radiances in the TC core area with NOAA operational HWRF (2011) and a hybrid data assimilation system: Danielle (2010). Mon. Wea. Rev., 141, 38893907, doi:10.1175/MWR-D-12-00340.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., X.-Y. Huang, and N. Pan, 2013: Development of the upgraded tangent linear and adjoint of the Weather Research and Forecasting (WRF) Model. J. Atmos. Oceanic Technol., 30, 1180–1188, doi:10.1175/JTECH-D-12-00213.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 71 11
PDF Downloads 150 52 3