Intercomparisons of CloudSat and Ground-Based Radar Retrievals of Rain Rate over Land

Sergey Y. Matrosov Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Sergey Y. Matrosov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Experimental retrievals of rain rates using the CloudSat spaceborne 94-GHz radar reflectivity gradient method over land were evaluated by comparing them with standard estimates from ground-based operational S-band radar measurements, which are widely used for quantitative precipitation estimations. The comparisons were performed for predominantly stratiform precipitation events that occurred in the vicinity of the Weather Surveillance Radar-1988 Doppler (WSR-88D) KGWX and KSHV radars during the CloudSat overpasses in the vicinity of these ground radar sites. The standard reflectivity-based WSR-88D rain-rate retrievals used in operational practice were utilized as a reference for the CloudSat retrieval evaluation. Spaceborne and ground-based radar rain-rate estimates that were closely collocated in space and time were generally well correlated. The correlation coefficients were approximately 0.65 on average, and the mean relative biases were usually within ±35% for the whole dataset and for individual events with typical rain rates exceeding ~2 mm h−1. For events with lighter rainfall, higher biases and lower correlations were often present. The normalized mean absolute differences between satellite- and ground-based radar retrievals were on average ~60%, with an increasing trend for lighter rainfall. Such mean differences are comparable to combined retrieval errors from both ground-based and satellite radar remote sensing approaches. Evaluation of potential effects of partial beam blockage on the ground-based radar measurements was performed, and the influence of the choice of relation between WSR-88D reflectivity and rain rate that was utilized in the ground-based rain-rate retrievals was assessed.

Corresponding author address: Sergey Y. Matrosov, R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: sergey.matrosov@noaa.gov

Abstract

Experimental retrievals of rain rates using the CloudSat spaceborne 94-GHz radar reflectivity gradient method over land were evaluated by comparing them with standard estimates from ground-based operational S-band radar measurements, which are widely used for quantitative precipitation estimations. The comparisons were performed for predominantly stratiform precipitation events that occurred in the vicinity of the Weather Surveillance Radar-1988 Doppler (WSR-88D) KGWX and KSHV radars during the CloudSat overpasses in the vicinity of these ground radar sites. The standard reflectivity-based WSR-88D rain-rate retrievals used in operational practice were utilized as a reference for the CloudSat retrieval evaluation. Spaceborne and ground-based radar rain-rate estimates that were closely collocated in space and time were generally well correlated. The correlation coefficients were approximately 0.65 on average, and the mean relative biases were usually within ±35% for the whole dataset and for individual events with typical rain rates exceeding ~2 mm h−1. For events with lighter rainfall, higher biases and lower correlations were often present. The normalized mean absolute differences between satellite- and ground-based radar retrievals were on average ~60%, with an increasing trend for lighter rainfall. Such mean differences are comparable to combined retrieval errors from both ground-based and satellite radar remote sensing approaches. Evaluation of potential effects of partial beam blockage on the ground-based radar measurements was performed, and the influence of the choice of relation between WSR-88D reflectivity and rain rate that was utilized in the ground-based rain-rate retrievals was assessed.

Corresponding author address: Sergey Y. Matrosov, R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: sergey.matrosov@noaa.gov
Save
  • Battaglia, A., J. Haynes, T. L’Ecuyer, and C. Simmer, 2008: Identifying multiple-scattering-affected profiles in CloudSat observations over the oceans. J. Geophys. Res., 113, D00A17, doi:10.1029/2008JD009960.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., S. Tanelli, S. Kobayashi, D. Zrnic, R. J. Hogan, and C. Simmer, 2010: Multiple scattering in radar systems: A review. J. Quant. Spectrosc. Radiat. Transfer, 111, 917947, doi:10.1016/j.jqsrt.2009.11.024.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 636 pp.

  • Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Gourley, J. J., B. Kaney, and R. A. Maddox, 2003: Evaluating the calibrations of radars: A software approach. 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., P3C.1. [Available online at https://ams.confex.com/ams/pdfpapers/64171.pdf.]

  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., P. Rodriguez, and N. Donaldson, 2008: Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network. J. Geophys. Res., 113, D00A07, doi:10.1029/2008JD009992.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. Villarni, and J. A. Smith, 2010: Radar-rainfall uncertainties: Where are we after thirty years of effort? Bull. Amer. Meteor. Soc., 91, 8794, doi:10.1175/2009BAMS2747.1.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, doi:10.1029/2011JD016076.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1997: Variability of microphysical parameters in high-altitude ice clouds: Results of the remote sensing method. J. Appl. Meteor., 36, 633648, doi:10.1175/1520-0450-36.6.633.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Potential for attenuation-based estimations of rainfall rate from CloudSat. Geophys. Res. Lett., 34, L05817, doi:10.1029/2006GL029161.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2008: Assessment of radar signal attenuation caused by the melting hydrometeor layer. IEEE Trans. Geosci. Remote Sens., 46, 10391047, doi:10.1109/TGRS.2008.915757.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2011: CloudSat measurements of landfalling Hurricanes Gustav and Ike (2008). J. Geophys. Res., 116, D01203, doi:10.1029/2010JD014506.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2013: Characteristics of landfalling atmospheric rivers inferred from satellite observations over the eastern North Pacific Ocean. Mon. Wea. Rev., 141, 37573768, doi:10.1175/MWR-D-12-00324.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. Battaglia, and P. Rodriguez, 2008: Effects of multiple scattering on attenuation-based retrievals of stratiform rainfall from CloudSat. J. Atmos. Oceanic Technol., 25, 21992208, doi:10.1175/2008JTECHA1095.1.

    • Search Google Scholar
    • Export Citation
  • Mitrescu, C., T. L’Ecuyer, J. Haynes, S. Miller, and J. Turk, 2010: CloudSat precipitation profiling algorithm—Model description. J. Appl. Meteor. Climatol., 49, 9911003, doi:10.1175/2009JAMC2181.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., S. Matrosov, and J. Campbell, 2007: CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation-driven upside-down lidar analog. Geophys Res. Lett., 34, L16818, doi:10.1029/2007GL030291.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, doi:10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) System: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 70 9
PDF Downloads 154 42 2