Seasonality of the Urban Heat Island Effect in Madison, Wisconsin

Jason Schatz Nelson Institute for Environmental Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jason Schatz in
Current site
Google Scholar
PubMed
Close
and
Christopher J. Kucharik Nelson Institute Center for Sustainability and the Global Environment, and Department of Agronomy, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Christopher J. Kucharik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Spatial and temporal variation in the urban heat island (UHI) effect from March 2012 through October 2013 was characterized using continuous temperature measurements from an array of up to 151 fixed sensors in and around Madison, Wisconsin, an urban area of population 407 000 surrounded by lakes and a rural landscape of agriculture, forests, wetlands, and grasslands. Spatially, the density of the built environment was the primary driver of temperature patterns, with local modifying effects of lake proximity and topographic relief. Temporally, wind speed, cloud cover, relative humidity, soil moisture, and snow all influenced UHI intensity, although the magnitude and significance of their effects varied by season and time of day. Seasonally, UHI intensities tended to be higher during the warmer summer months and lower during the colder months. Seasonal trends in monthly average wind speed and cloud cover tracked annual trends in UHI intensity, with clearer, calmer conditions that are conducive to the stronger UHIs being more common during the summer. However, clear, calm summer nights still had higher UHI intensities than clear, calm winter nights, indicating that some background factor, such as vegetation, shifted baseline UHI intensities throughout the year. The authors propose that regional vegetation and snow-cover conditions set seasonal baselines for UHI intensity and that factors like wind and clouds modified daily UHI intensity around that baseline.

Corresponding author address: Jason Schatz, Nelson Institute for Environmental Studies, University of Wisconsin–Madison, 122 Science Hall, 550 North Park Street, Madison, WI 53706. E-mail: jschatz2@wisc.edu

Abstract

Spatial and temporal variation in the urban heat island (UHI) effect from March 2012 through October 2013 was characterized using continuous temperature measurements from an array of up to 151 fixed sensors in and around Madison, Wisconsin, an urban area of population 407 000 surrounded by lakes and a rural landscape of agriculture, forests, wetlands, and grasslands. Spatially, the density of the built environment was the primary driver of temperature patterns, with local modifying effects of lake proximity and topographic relief. Temporally, wind speed, cloud cover, relative humidity, soil moisture, and snow all influenced UHI intensity, although the magnitude and significance of their effects varied by season and time of day. Seasonally, UHI intensities tended to be higher during the warmer summer months and lower during the colder months. Seasonal trends in monthly average wind speed and cloud cover tracked annual trends in UHI intensity, with clearer, calmer conditions that are conducive to the stronger UHIs being more common during the summer. However, clear, calm summer nights still had higher UHI intensities than clear, calm winter nights, indicating that some background factor, such as vegetation, shifted baseline UHI intensities throughout the year. The authors propose that regional vegetation and snow-cover conditions set seasonal baselines for UHI intensity and that factors like wind and clouds modified daily UHI intensity around that baseline.

Corresponding author address: Jason Schatz, Nelson Institute for Environmental Studies, University of Wisconsin–Madison, 122 Science Hall, 550 North Park Street, Madison, WI 53706. E-mail: jschatz2@wisc.edu
Save
  • Ackerman, B., 1985: Temporal march of the Chicago heat island. J. Climate Appl. Meteor., 24, 547554, doi:10.1175/1520-0450(1985)024<0547:TMOTCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alcoforado, M.-J., and H. Andrade, 2006: Nocturnal urban heat island in Lisbon (Portugal): Main features and modelling attempts. Theor. Appl. Climatol., 84, 151159, doi:10.1007/s00704-005-0152-1.

    • Search Google Scholar
    • Export Citation
  • Anselin, L., 2002: Under the hood: Issues in the specification and interpretation of spatial regression models. Agric. Econ., 27, 247267, doi:10.1111/j.1574-0862.2002.tb00120.x.

    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, doi:10.1002/joc.859.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., and Coauthors, 2011: The Oklahoma City Micronet. Meteor. Appl.,18, 252–261, doi:10.1002/met.189.

  • Birmingham Urban Climate Laboratory, cited 2014: HiTemp project: High density measurements within the urban environment. [Available online at http://www.birmingham.ac.uk/schools/gees/centres/bucl/hitemp/index.aspx.]

  • Bottyán, Z., and J. Unger, 2003: A multiple linear statistical model for estimating the mean maximum urban heat island. Theor. Appl. Climatol., 75, 233243, doi:10.1007/s00704-003-0735-7.

    • Search Google Scholar
    • Export Citation
  • Chang, B., H.-Y. Wang, T.-Y. Peng, and Y.-S. Hsu, 2010: Development and evaluation of a city-wide wireless weather sensor network. Educ. Technol. Soc., 13, 270280.

    • Search Google Scholar
    • Export Citation
  • Chow, W. T. L., and M. Roth, 2006: Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol., 26, 22432260, doi:10.1002/joc.1364.

    • Search Google Scholar
    • Export Citation
  • Cohen, B., 2006: Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc., 28, 6380, doi:10.1016/j.techsoc.2005.10.005.

    • Search Google Scholar
    • Export Citation
  • Demographia, cited 2013: Demographia world urban areas (urban agglomerations). 9th Annual Edition. [Available online at http://www.demographia.com/db-worldua.pdf.]

  • Eliasson, I., and M. K. Svensson, 2003: Spatial air temperature variations and urban land use—A statistical approach. Meteor. Appl., 10, 135149, doi:10.1017/S1350482703002056.

    • Search Google Scholar
    • Export Citation
  • Figuerola, P. I., and N. A. Mazzeo, 1998: Urban-rural temperature differences in Buenos Aires. Int. J. Climatol., 18, 17091723, doi:10.1002/(SICI)1097-0088(199812)18:15<1709::AID-JOC338>3.0.CO;2-I.

    • Search Google Scholar
    • Export Citation
  • Filleul, L., and Coauthors, 2006: The relation between temperature, ozone, and mortality in nine French cities during the heat wave of 2003. Environ. Health Perspect., 114, 13441347, doi:10.1289/ehp.8328.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., K. W. Oleson, and D. M. Lawrence, 2012: Contrasting urban and rural heat stress responses to climate change. Geophys. Res. Lett., 39, L03705, doi:10.1029/2011GL050576.

    • Search Google Scholar
    • Export Citation
  • Fortuniak, K., K. Kłysik, and J. Wibig, 2006: Urban–rural contrasts of meteorological parameters in Łódź. Theor. Appl. Climatol., 84, 91101, doi:10.1007/s00704-005-0147-y.

    • Search Google Scholar
    • Export Citation
  • Fry, J., and Coauthors, 2012: Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens.,77, 858–864.

  • Gedzelman, S. D., S. Austin, R. Cermak, N. Stefano, S. Partridge, S. Quesenberry, and D. A. Robinson, 2003: Mesoscale aspects of the urban heat island around New York City. Theor. Appl. Climatol., 75, 2942, doi:10.1007/s00704-002-0724-2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, T. W., A. J. Brazel, W. L. Stefanov, W. Bigler, and E. M. Saffell, 2004: The role of rural variability in urban heat island determination for Phoenix, Arizona. J. Appl. Meteor., 43, 476486, doi:10.1175/1520-0450(2004)043<0476:TRORVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hinkel, K. M., and F. E. Nelson, 2007: Anthropogenic heat island at Barrow, Alaska, during winter: 2001–2005. J. Geophys. Res., 112, D06118, doi:10.1029/2006JD007837.

    • Search Google Scholar
    • Export Citation
  • Hinkel, K. M., F. E. Nelson, A. E. Klene, and J. H. Bell, 2003: The urban heat island in winter at Barrow, Alaska. Int. J. Climatol., 23, 18891905, doi:10.1002/joc.971.

    • Search Google Scholar
    • Export Citation
  • Hjort, J., J. Suomi, and J. Käyhkö, 2011: Spatial prediction of urban–rural temperatures using statistical methods. Theor. Appl. Climatol., 106, 139152, doi:10.1007/s00704-011-0425-9.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, P., O. Krueger, and K. H. Schlünzen, 2012: A statistical model for the urban heat island and its application to a climate change scenario. Int. J. Climatol., 32, 12381248, doi:10.1002/joc.2348.

    • Search Google Scholar
    • Export Citation
  • Hsiang, S. M., and M. Burke, 2014: Climate, conflict, and social stability: What does the evidence say? Climatic Change,123, 39–55, doi:10.1007/s10584-013-0868-3.

  • Hung, T. K., and O. C. Wo, 2012: Development of a Community Weather Information Network (Co-WIN) in Hong Kong. Weather, 67, 4850, doi:10.1002/wea.1883.

    • Search Google Scholar
    • Export Citation
  • Ichinose, T., K. Shimodozonob, and K. Hanakib, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33, 38973909, doi:10.1016/S1352-2310(99)00132-6.

    • Search Google Scholar
    • Export Citation
  • Jauregui, E., L. Godinez, and F. Cruz, 1992: Aspects of heat-island development in Guadalajara, Mexico. Atmos. Environ., 26B, 391396, doi:10.1016/0957-1272(92)90014-J.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. P., J. J. Webber, K. U. B. Ravichandra, V. Lulla, and A. C. Stanforth, 2013: Spatiotemporal variations in heat-related health risk in three midwestern US cities between 1990 and 2010. Geocarto Int., 29, 6584, doi:10.1080/10106049.2013.799718.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and J.-J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteor., 41, 651659, doi:10.1175/1520-0450(2002)041<0651:MUHIII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and J.-J. Baik, 2004: Daily maximum urban heat island intensity in large cities of Korea. Theor. Appl. Climatol., 79, 151164, doi:10.1007/s00704-004-0070-7.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and J.-J. Baik, 2005: Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteor., 44, 591605, doi:10.1175/JAM2226.1.

    • Search Google Scholar
    • Export Citation
  • Kolokotroni, M., and R. Giridharan, 2008: Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Sol. Energy, 82, 986998, doi:10.1016/j.solener.2008.05.004.

    • Search Google Scholar
    • Export Citation
  • Kolokotroni, M., X. Ren, M. Davies, and A. Mavrogianni, 2012: London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build., 47, 302311, doi:10.1016/j.enbuild.2011.12.019.

    • Search Google Scholar
    • Export Citation
  • Kłysik, K., and K. Fortuniak, 1999: Temporal and spatial characteristics of the urban heat island of Łódź, Poland. Atmos. Environ., 33, 38853895, doi:10.1016/S1352-2310(99)00131-4.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., and J.-J. Baik, 2010: Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol., 100, 227237, doi:10.1007/s00704-009-0247-1.

    • Search Google Scholar
    • Export Citation
  • Luber, G., and M. McGeehin, 2008: Climate change and extreme heat events. Amer. J. Prev. Med., 35, 429435, doi:10.1016/j.amepre.2008.08.021.

    • Search Google Scholar
    • Export Citation
  • Malevich, S. B., and K. Klink, 2011: Relationships between snow and the wintertime Minneapolis urban heat island. J. Appl. Meteor. Climatol., 50, 18841894, doi:10.1175/JAMC-D-11-05.1.

    • Search Google Scholar
    • Export Citation
  • Martin, P., cited 2013: R squared for mixed models. Ecology for a crowded planet. [Available online at http://ecologyforacrowdedplanet.wordpress.com/2013/02/26/r-squared-for-mixed-models/.]

  • Mikami, T., H. Ando, W. Morishima, T. Izumi, and T. Shioda, 2003: A new urban heat island monitoring system in Tokyo. Proc. Fifth Annual Int. Conf. on Urban Climate, Lodz, Poland, International Association for Urban Climate, 0.3.5. [Available online at http://nargeo.geo.uni.lodz.pl/~icuc5/text/O_3_5.pdf.]

  • Mingguang Li, R., and M. Roth, 2009: Spatial variation of the canopy level urban heat island in Singapore. Extended Abstracts, Seventh Int. Conf. on Urban Climate, Yokohama, Japan, International Association for Urban Climate, P3-36. [Available online at http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/384784-1-090123163421-004.pdf.]

  • Mohsin, T., and W. A. Gough, 2012: Characterization and estimation of urban heat island at Toronto: Impact of the choice of rural sites. Theor. Appl. Climatol., 108, 105117, doi:10.1007/s00704-011-0516-7.

    • Search Google Scholar
    • Export Citation
  • Montávez, J. P., A. Rodríguez, and J. I. Jiménez, 2000: A study of the urban heat island of Granada. Int. J. Climatol., 20, 899911, doi:10.1002/1097-0088(20000630)20:8<899::AID-JOC433>3.0.CO;2-I.

    • Search Google Scholar
    • Export Citation
  • Morris, C. J. G., I. Simmonds, and N. Plummer, 2001: Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. J. Appl. Meteor., 40, 169182, doi:10.1175/1520-0450(2001)040<0169:QOTIOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muller, C. L., L. Chapman, C. S. B. Grimmond, D. T. Young, and X. Cai, 2013: Sensors and the city: A review of urban meteorological networks. Int. J. Climatol., 33, 15851600, doi:10.1002/joc.3678.

    • Search Google Scholar
    • Export Citation
  • Nakagawa, S., and H. Schielzeth, 2013: A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol., 4, 133142, doi:10.1111/j.2041-210x.2012.00261.x.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1973: City size and the urban heat island. Atmos. Environ., 7, 769779, doi:10.1016/0004-6981(73)90140-6.

  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124.

  • Oke, T. R., 2006: Initial guidance to obtain representative meteorological observations at urban sites. WMO Instruments and Observing Methods Rep. 81, WMO/TD 1250, 47 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-81/IOM-81-UrbanMetObs.pdf.]

  • Oswald, E. M., R. B. Rood, K. Zhang, C. J. Gronlund, M. S. O’Neill, J. L. White-Newsome, S. J. Brines, and D. G. Brown, 2012: An investigation into the spatial variability of near-surface air temperatures in the Detroit, Michigan, metropolitan region. J. Appl. Meteor. Climatol., 51, 12901304, doi:10.1175/JAMC-D-11-0127.1.

    • Search Google Scholar
    • Export Citation
  • Patz, J. A., D. Campbell-Lendrum, T. Holloway, and J. A. Foley, 2005: Impact of regional climate change on human health. Nature, 438, 310317, doi:10.1038/nature04188.

    • Search Google Scholar
    • Export Citation
  • Runnalls, K. E., and T. R. Oke, 2000: Dynamics and controls of the near-surface heat island of Vancouver, British Columbia. Phys. Geogr., 21, 283304.

    • Search Google Scholar
    • Export Citation
  • Sanderson, M., I. Kumanan, T. Tanguay, and W. Schertzer, 1973: Three aspects of the urban climate of Detroit-Windsor. J. Appl. Meteor., 12, 629638, doi:10.1175/1520-0450(1973)012<0629:TAOTUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schott, J. R., C. Salvaggio, and W. J. Volchok, 1988: Radiometric scene normalization using pseudoinvariant features. Remote Sens. Environ., 26, 116, doi:10.1016/0034-4257(88)90116-2.

    • Search Google Scholar
    • Export Citation
  • Shahgedanova, M., T. P. Burt, and T. D. Davies, 1997: Some aspects of the three-dimensional heat island in Moscow. Int. J. Climatol., 17, 14511465, doi:10.1002/(SICI)1097-0088(19971115)17:13<1451::AID-JOC201>3.0.CO;2-Z.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, doi:10.1175/BAMS-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Stone, B., J. J. Hess, and H. Frumkin, 2010: Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities? Environ. Health Perspect., 118, 14251428, doi:10.1289/ehp.0901879.

    • Search Google Scholar
    • Export Citation
  • Suomi, J., and J. Käyhkö, 2012: The impact of environmental factors on urban temperature variability in the coastal city of Turku, SW Finland. Int. J. Climatol., 32, 451463, doi:10.1002/joc.2277.

    • Search Google Scholar
    • Export Citation
  • Suomi, J., J. Hjort, and J. Käyhkö, 2012: Effects of scale on modeling the urban heat island in Turku, SW Finland. Climate Res., 55, 105118, doi:10.3354/cr01123.

    • Search Google Scholar
    • Export Citation
  • Szymanowski, M., and M. Kryza, 2009: GIS-based techniques for urban heat island spatialization. Climate Res., 38, 171187, doi:10.3354/cr00780.

    • Search Google Scholar
    • Export Citation
  • Szymanowski, M., and M. Kryza, 2012: Local regression models for spatial interpolation of urban heat island—An example from Wrocław, SW Poland. Theor. Appl. Climatol., 108, 5371, doi:10.1007/s00704-011-0517-6.

    • Search Google Scholar
    • Export Citation
  • Tumanov, S., 1999: Influences of the city of Bucharest on weather and climate parameters. Atmos. Environ., 33, 41734183, doi:10.1016/S1352-2310(99)00160-0.

    • Search Google Scholar
    • Export Citation
  • Unger, J., Z. Bottyán, Z. Sumeghy, and A. Gulyas, 2000: Urban heat island development affected by urban surface factors. Idojaras, 104, 253268.

    • Search Google Scholar
    • Export Citation
  • WHO, 2010: Hidden cities: Unmasking and overcoming health inequities in urban settings. World Health Organization, UN Habitat, Kobe, Japan, 126 pp.

  • Yamashita, S., K. Sekine, M. Shoda, K. Yamashita, and Y. Hara, 1986: On relationships between heat island and sky view factor in the cities of Tama River basin, Japan. Atmos. Environ., 20, 681686, doi:10.1016/0004-6981(86)90182-4.

    • Search Google Scholar
    • Export Citation
  • Yang, P., G. Ren, and W. Liu, 2013: Spatial and temporal characteristics of Beijing urban heat island intensity. J. Appl. Meteor. Climatol., 52, 18031816, doi:10.1175/JAMC-D-12-0125.1.

    • Search Google Scholar
    • Export Citation
  • Yow, D. M., and G. J. Carbone, 2006: The urban heat island and local temperature variations in Orlando, Florida. Southeast. Geogr., 46, 297321, doi:10.1353/sgo.2006.0033.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3080 523 47
PDF Downloads 1967 375 31