Combining the Perspective of Satellite- and Ground-Based Observations to Analyze Cloud Frontal Systems

Anja Hünerbein Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Anja Hünerbein in
Current site
Google Scholar
PubMed
Close
,
Hartwig Deneke Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Hartwig Deneke in
Current site
Google Scholar
PubMed
Close
,
Andreas Macke Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Andreas Macke in
Current site
Google Scholar
PubMed
Close
,
Kerstin Ebell Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by Kerstin Ebell in
Current site
Google Scholar
PubMed
Close
, and
Ulrich Görsdorf Meteorologisches Observatorium Lindenberg, German Weather Service, Lindenberg, Germany

Search for other papers by Ulrich Görsdorf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A method is presented to analyze the cloud life cycle of frontal systems passing over European supersites. It combines information on the vertical profiles of cloud properties derived from ground-based observations with cloud products obtained from satellite-based observations, including their spatial variability. The Euler and Lagrange perspectives are adopted to consider the history of a cloud system that passes the supersites. The forward model known as RTTOV (Radiative Transfer for the Television and Infrared Observation Satellite Operational Vertical Sounder) and the ground-based “CloudNET” products are used to simulate synthetic satellite observations at the supersites, which are subsequently compared with the actual observations of the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument. Different metrics are considered to quantify and interpret the consistency of the synthetic and the observed satellite data: brightness temperatures at the thermal IR channels, the split-window channels, and trispectral combinations, as well as the outgoing longwave radiation. In this way, the uncertainties of the individual datasets are investigated. This knowledge provides the motivation to combine the disjunct cloud products from satellite with those from ground instruments to characterize the development of the passing cloud frontal systems. In addition, back trajectories started at different stages of the cloud system were used to analyze its history prior to the supersite overpass. The trajectories are used to study, for example, the life time of the cloud frontal system, changes of the cloud phase, and the evolution of cloud physics such as optical thickness, effective particle size, and water path. As a test bed, a case study with a cold front passing Lindenberg, Germany, is presented.

Denotes Open Access content.

Corresponding author address: Anja Hünerbein, Leibniz Institute for Tropospheric Research, Permoserstraße 15, 04318 Leipzig, Germany. E-mail: anjah@tropos.de

Abstract

A method is presented to analyze the cloud life cycle of frontal systems passing over European supersites. It combines information on the vertical profiles of cloud properties derived from ground-based observations with cloud products obtained from satellite-based observations, including their spatial variability. The Euler and Lagrange perspectives are adopted to consider the history of a cloud system that passes the supersites. The forward model known as RTTOV (Radiative Transfer for the Television and Infrared Observation Satellite Operational Vertical Sounder) and the ground-based “CloudNET” products are used to simulate synthetic satellite observations at the supersites, which are subsequently compared with the actual observations of the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument. Different metrics are considered to quantify and interpret the consistency of the synthetic and the observed satellite data: brightness temperatures at the thermal IR channels, the split-window channels, and trispectral combinations, as well as the outgoing longwave radiation. In this way, the uncertainties of the individual datasets are investigated. This knowledge provides the motivation to combine the disjunct cloud products from satellite with those from ground instruments to characterize the development of the passing cloud frontal systems. In addition, back trajectories started at different stages of the cloud system were used to analyze its history prior to the supersite overpass. The trajectories are used to study, for example, the life time of the cloud frontal system, changes of the cloud phase, and the evolution of cloud physics such as optical thickness, effective particle size, and water path. As a test bed, a case study with a cold front passing Lindenberg, Germany, is presented.

Denotes Open Access content.

Corresponding author address: Anja Hünerbein, Leibniz Institute for Tropospheric Research, Permoserstraße 15, 04318 Leipzig, Germany. E-mail: anjah@tropos.de
Save
  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992, doi:10.1029/GL017i001p00089.

    • Search Google Scholar
    • Export Citation
  • Astin, I., L. Di Girolamo, and H. M. Poll, 2001: Bayesian confidence intervals for true fractional coverage from finite transect measurements: Implications for cloud studies from space. J. Geophys. Res., 106, 17 30317 310, doi:10.1029/2001JD900168.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1919: On the structure of moving cyclones. Mon. Wea. Rev., 47, 9599, doi:10.1175/1520-0493(1919)47<95:OTSOMC>2.0.CO;2.

  • Boers, R., H. Russchenberg, J. Erkelens, V. Venema, A. van Lammeren, A. Apituley, and S. Jongen, 2000: Ground-based remote sensing of stratocumulus properties during CLARA, 1996. J. Appl. Meteor., 39, 169181, doi:10.1175/1520-0450(2000)039<0169:GBRSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bouniol, D., and Coauthors, 2010: Using continuous ground-based radar and lidar measurements for evaluating the representation of clouds in four operational models. J. Appl. Meteor. Climatol., 49, 19711991, doi:10.1175/2010JAMC2333.1.

    • Search Google Scholar
    • Export Citation
  • Deneke, H., W. Knap, and C. Simmer, 2009: Multiresolution analysis of the temporal variance and correlation of transmittance and reflectance of an atmospheric column. J. Geophys. Res., 114, D17206, doi:10.1029/2008JD011680.

    • Search Google Scholar
    • Export Citation
  • Derrien, M., 2012: Validation report for “cloud products” (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2). NWC SAF Tech. Rep. SAF/NWC/CDOP/MFL/SCI/VR/06, 31 pp. [Available online at http://www.nwcsaf.org/scidocs/Documentation/SAF-NWC-CDOP-MFL-SCI-VR-06_v1.0.pdf.]

  • Derrien, M., 2013: Algorithm theoretical basis document for “cloud products” (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2). NWC SAF Tech. Rep. SAF/NWC/CDOP2/MFL/SCI/ATBD/01, Issue 3, Rev. 2.1, 87 pp. [Available online at http://www.nwcsaf.org/HTMLContributions/SUM/SAF-NWC-CDOP2-MFL-SCI-ATBD-01_v3.2.1.pdf.]

  • EUMETSAT, 2014: Outgoing longwave radiation product: Factsheet. EUMETSAT Tech. Doc. EUM/OPS/DOC/09/5176, issue v1D, 10 pp. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_OLR_FACTSHEET&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Eyre, J., 1991: A fast radiative transfer model for satellite sounding systems. ECMWF Internal Tech. Memo. 176, 28 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/001-300/tm176.pdf.]

  • Feijt, A., and A. van Lammeren, 1996: Ground-based and satellite observations of cloud fields in the Netherlands. Mon. Wea. Rev., 124, 19141923, doi:10.1175/1520-0493(1996)124<1914:GBASOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, doi:10.1175/JCLI3998.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. Gettelman, R. Neale, R. Wood, P. Rasch, and H. Morrison, 2008: Midlatitude cyclone compositing to constrain climate model behavior using satellite observations. J. Climate, 21, 58875903, doi:10.1175/2008JCLI2235.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. Bodas-Salcedo, and M. Brooks, 2011: Using model analysis and satellite data to assess cloud and precipitation in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 15011515, doi:10.1002/qj.858.

    • Search Google Scholar
    • Export Citation
  • Greuell, W., and R. Roebeling, 2009: Toward a standard procedure for validation of satellite-derived cloud liquid water path: A study with SEVIRI data. J. Appl. Meteor. Climatol., 48, 15751590, doi:10.1175/2009JAMC2112.1.

    • Search Google Scholar
    • Export Citation
  • Grützun, V., J. Quaas, C. Morcrette, and F. Ament, 2013: Evaluating statistical cloud schemes: What can we gain from ground-based remote sensing? J. Geophys. Res. Atmos., 118, 10 50710 517, doi:10.1002/jgrd.50813.

    • Search Google Scholar
    • Export Citation
  • Higgins, C. W., M. Froidevaux, V. Simeonov, N. Vercauteren, C. Barry, and M. B. Parlange, 2012: The effect of scale on the applicability of Taylor’s frozen turbulence hypothesis in the atmospheric boundary layer. Bound.-Layer Meteor., 143, 379391, doi:10.1007/s10546-012-9701-1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, doi:10.1175/JAM2340.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898, doi:10.1175/BAMS-88-6-883.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 2003: An improved strategy for the evaluation of cloud parameterizations in GCMs. Bull. Amer. Meteor. Soc., 84, 13871402, doi:10.1175/BAMS-84-10-1387.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., S. Iacobellis, and R. C. Somerville, 2003: SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics. J. Climate, 16, 16431664, doi:10.1175/1520-0442(2003)016<1643:SSOTIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, doi:10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J.-P. Muller, and P. De Valk, 2005: On the use of ICESAT-GLAS measurements for MODIS and SEVIRI cloud-top height accuracy assessment. Geophys. Res. Lett., 32, L19815, doi:10.1029/2005GL023275.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. D. Del Genio, M. Bauer, and W. Kovari, 2010: Cloud vertical distribution across warm and cold fronts in CloudSatCALIPSO data and a general circulation model. J. Climate, 23, 33973415, doi:10.1175/2010JCLI3282.1.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R., A. Feijt, and P. Stammes, 2006: Cloud property retrievals for climate monitoring: Implications of differences between spinning enhanced visible and infrared imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111, D20210, doi:10.1029/2005JD006990.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R., H. Deneke, and A. Feijt, 2008: Validation of cloud liquid water path retrievals from SEVIRI using one year of CloudNET observations. J. Appl. Meteor. Climatol., 47, 206222, doi:10.1175/2007JAMC1661.1.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiances observations. Quart. J. Roy. Meteor. Soc., 125, 14071425, doi:10.1256/smsqj.55614.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., M. Matricardi, and A. Geer, 2010: RTTOV-9 users guide. EUMETSAT Tech. Rep. NWPSAF-MO-UD-016, 57 pp. [Available online at http://nwpsaf.eu/deliverables/rtm/rttov9_files/users_guide_9_v1.7.pdf.]

  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, doi:10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., and Coauthors, 2009: Operational climate monitoring from space: The EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF). Atmos. Chem. Phys., 9, 16871709, doi:10.5194/acp-9-1687-2009.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and S. Grønås, 1999: The Life Cycles of Extratropical Cyclones. Amer. Meteor. Soc., 359 pp.

  • Smith, W. L., P. Minnis, H. Finney, R. Palikonda, and M. M. Khaiyer, 2008: An evaluation of operational GOES-derived single-layer cloud top heights with ARSCL data over the ARM Southern Great Plains site. Geophys. Res. Lett., 35, L13820, doi:10.1029/2008GL034275.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35, 21232132, doi:10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, doi:10.5194/acp-5-2461-2005.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476490, doi:10.1098/rspa.1938.0032.

  • van Lammeren, A., A. Feijt, J. Konings, E. van Meijgaard, and A. Van Ulden, 2000: Combination of ground-based and satellite cloud observations on a routine basis. Meteor. Z., 9, 125134.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., D. Ng, and J. Dozier, 1994: Spectral emissivity measurements of land-surface materials and related radiative transfer simulations. Adv. Space Res., 14, 9194, doi:10.1016/0273-1177(94)90197-X.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., and B. Mayer, 2006: Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. J. Geophys. Res., 111, D14209, doi:10.1029/2005JD006955.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 219 61 4
PDF Downloads 137 32 5