Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

Min Deng * University of Wyoming, Laramie, Wyoming

Search for other papers by Min Deng in
Current site
Google Scholar
PubMed
Close
,
Pavlos Kollias McGill University, Montreal, Quebec, Canada

Search for other papers by Pavlos Kollias in
Current site
Google Scholar
PubMed
Close
,
Zhe Feng Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Zhe Feng in
Current site
Google Scholar
PubMed
Close
,
Chidong Zhang University of Miami, Miami, Florida

Search for other papers by Chidong Zhang in
Current site
Google Scholar
PubMed
Close
,
Charles N. Long Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Charles N. Long in
Current site
Google Scholar
PubMed
Close
,
Heike Kalesse McGill University, Montreal, Quebec, Canada

Search for other papers by Heike Kalesse in
Current site
Google Scholar
PubMed
Close
,
Arunchandra Chandra University of Miami, Miami, Florida

Search for other papers by Arunchandra Chandra in
Current site
Google Scholar
PubMed
Close
,
Vickal V. Kumar Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

Search for other papers by Vickal V. Kumar in
Current site
Google Scholar
PubMed
Close
, and
Alain Protat Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

Search for other papers by Alain Protat in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, methods of convective/stratiform precipitation classification and surface rain-rate estimation based on the Atmospheric Radiation Measurement Program (ARM) cloud radar measurements were developed and evaluated. Simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two scanning precipitation radars [NCAR S-band/Ka-band Dual Polarization, Dual Wavelength Doppler Radar (S-PolKa) and Texas A&M University Shared Mobile Atmospheric Research and Teaching Radar (SMART-R)], and surface precipitation during the Dynamics of the Madden–Julian Oscillation/ARM MJO Investigation Experiment (DYNAMO/AMIE) field campaign were used. The motivation of this study is to apply the unique long-term ARM cloud radar observations without accompanying precipitation radars to the study of cloud life cycle and precipitation features under different weather and climate regimes. The resulting convective/stratiform classification from KAZR was evaluated against precipitation radars. Precipitation occurrence and classified convective/stratiform rain fractions from KAZR compared favorably to the collocated SMART-R and S-PolKa observations. Both KAZR and S-PolKa radars observed about 5% precipitation occurrence. The convective (stratiform) precipitation fraction is about 18% (82%). Collocated disdrometer observations of two days showed an increased number concentration of small and large raindrops in convective rain relative to dominant small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also showed distinct structures for convective and stratiform rain. These evidences indicate that the method produces physically consistent results for the two types of rain. A new KAZR-based, two-parameter [the gradient of accumulative radar reflectivity Ze (GAZ) below 1 km and near-surface Ze] rain-rate estimation procedure was developed for both convective and stratiform rain. This estimate was compared with the exponential Z–R (reflectivity–rain rate) relation. The relative difference between the estimated and surface-measured rainfall rates showed that the two-parameter relation can improve rainfall estimation relative to the Z–R relation.

Corresponding author address: Min Deng, Department of Atmospheric Science, University of Wyoming, Dept. 3038, 1000 East University Avenue, Laramie, WY 82071. E-mail: mdeng2@uwyo.edu

Abstract

In this study, methods of convective/stratiform precipitation classification and surface rain-rate estimation based on the Atmospheric Radiation Measurement Program (ARM) cloud radar measurements were developed and evaluated. Simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two scanning precipitation radars [NCAR S-band/Ka-band Dual Polarization, Dual Wavelength Doppler Radar (S-PolKa) and Texas A&M University Shared Mobile Atmospheric Research and Teaching Radar (SMART-R)], and surface precipitation during the Dynamics of the Madden–Julian Oscillation/ARM MJO Investigation Experiment (DYNAMO/AMIE) field campaign were used. The motivation of this study is to apply the unique long-term ARM cloud radar observations without accompanying precipitation radars to the study of cloud life cycle and precipitation features under different weather and climate regimes. The resulting convective/stratiform classification from KAZR was evaluated against precipitation radars. Precipitation occurrence and classified convective/stratiform rain fractions from KAZR compared favorably to the collocated SMART-R and S-PolKa observations. Both KAZR and S-PolKa radars observed about 5% precipitation occurrence. The convective (stratiform) precipitation fraction is about 18% (82%). Collocated disdrometer observations of two days showed an increased number concentration of small and large raindrops in convective rain relative to dominant small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also showed distinct structures for convective and stratiform rain. These evidences indicate that the method produces physically consistent results for the two types of rain. A new KAZR-based, two-parameter [the gradient of accumulative radar reflectivity Ze (GAZ) below 1 km and near-surface Ze] rain-rate estimation procedure was developed for both convective and stratiform rain. This estimate was compared with the exponential Z–R (reflectivity–rain rate) relation. The relative difference between the estimated and surface-measured rainfall rates showed that the two-parameter relation can improve rainfall estimation relative to the Z–R relation.

Corresponding author address: Min Deng, Department of Atmospheric Science, University of Wyoming, Dept. 3038, 1000 East University Avenue, Laramie, WY 82071. E-mail: mdeng2@uwyo.edu
Save
  • Ackerman, T. P., and G. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 3845, doi:10.1063/1.1554135.

  • Atlas, D., C. W. Ulbrich, F. D. Marks Jr., R. A. Black, E. Amitai, P. T. Willis, and C. E. Samsury, 2000: Partitioning tropical oceanic convective and stratiform rains by draft strength. J. Geophys. Res., 105, 22592267, doi:10.1029/1999JD901009.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997: Rain type classification algorithm for TRMM Precipitation Radar. Proc. IEEE 1997 Int. Geoscience Remote Sensing Symp., Singapore, IEEE, 16361638.

  • Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122, doi:10.1175/2009JTECHA1258.1.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, doi:10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., and Coauthors, 2001: The ARM millimeter wave cloud radars (MMCRs) and the active remote sensing of clouds (ARSCL) value added product (VAP). DOE Tech. Memo. ARM VAP-002.1, 38 pp.

  • Doelling, I. G., J. Joss, and J. Riedl, 1998: Systematic variations of Z–R relationships from drop size distributions measured in northern Germany during seven years. Atmos. Res., 47–48, 635649, doi:10.1016/S0169-8095(98)00043-X.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, and R. S. Hemler, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 34443463, doi:10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ellis, S. M., and J. Vivekanandan, 2010: Water vapor estimates using simultaneous dual-wavelength radar observations. Radio Sci., 45, RS5002, doi:10.1029/2009RS004280.

    • Search Google Scholar
    • Export Citation
  • Ellis, S. M., and J. Vivekanandan, 2011: Liquid water content estimates using simultaneous S and Ka band radar measurements. Radio Sci., 46, RS2010, doi:10.1029/2010RS004361.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., X. Dong, and B. Xi, 2009: A method to merge WSR-88D data with ARM SGP millimeter cloud radar data by studying deep convective systems. J. Atmos. Oceanic Technol., 26, 958971, doi:10.1175/2008JTECHA1190.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. A. McFarlane, C. Schumacher, S. Ellis, J. Comstock, and N. Bharadwaj, 2014: Constructing a merged cloud-precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE Experiment at Addu Atoll. J. Atmos. Oceanic Technol., 31, 1021–1042, doi:10.1175/JTECH-D-13-00132.1.

    • Search Google Scholar
    • Export Citation
  • Fliegel, J. M., and C. Schumacher, 2012: Quality control and census of SMART-R observations from the DYNAMO/CINCY2011 field campaign. M.S. thesis, Dept. of Atmospheric Science, Texas A&M University, 84 pp.

  • Gamache, J. F., and R. A. Houze Jr., 1983: Water budget of a mesoscale convective system in the tropics. J. Atmos. Sci., 40, 18351850, doi:10.1175/1520-0469(1983)040<1835:WBOAMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Y. Dawei, 2004: Classification and characterization of tropical precipitation based on high-resolution airborne vertical incidence radar. Part I: Classification. J. Appl. Meteor., 43, 15541566, doi:10.1175/JAM2158.1.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., M. J. Bartholomew, M. Pope, S. Collis, and M. P. Jensen, 2014: A summary of precipitation characteristics from the 2006–11 northern Australian wet seasons as revealed by ARM disdrometer research facilities (Darwin, Australia). J. Appl. Meteor. Climatol., 53, 1213–1231, doi:10.1175/JAMC-D-13-0222.1.

    • Search Google Scholar
    • Export Citation
  • Gu, J.-Y., A. Ryzhkov, P. Zhang, P. Neilley, M. Knight, B. Wolf, and D.-I. Lee, 2011: Polarimetric attenuation correction in heavy rain at C band. J. Appl. Meteor. Climatol, 50, 3958, doi:10.1175/2010JAMC2258.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, doi:10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henderson, P. W., and R. Pincus, 2009: Multiyear evaluations of a cloud model using ARM data. J. Atmos. Sci., 66, 29252936, doi:10.1175/2009JAS2957.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, doi:10.1002/qj.49711548702.

    • Search Google Scholar
    • Export Citation
  • Houze, R., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze, R., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R., S. Brodzik, C. Schumacher, S. E. Yuter, and C. R. Williams, 2004: Uncertainties in oceanic radar rain maps at Kwajalein and implications for satellite validation. J. Appl. Meteor., 43, 11141132, doi:10.1175/1520-0450(2004)043<1114:UIORRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keeler, R. J., J. Luts, and J. Vivekanandan, 2000: SPOLKA: NCAR’s polarimetric Doppler research radar. Proc. IEEE 2000 Int. Geoscience and Remote Sensing Symp., IGARSS 2000, Honolulu, HI, IEEE, 1570–1573.

  • Kollias, P., B. A. Albrecht, and F. D. Mark, 2003: Cloud radar observations of vertical drafts and microphysics in convective rain. J. Geophys. Res., 108, 4053, doi:10.1029/2001JD002033.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, B. A. Albrecht, M. A. Miller, K. P. Moran, and K. L. Johnson, 2005: The Atmospheric Radiation Measurement Program cloud profiling radars: An evaluation of signal processing and sampling strategies. J. Atmos. Oceanic Technol., 22, 930948, doi:10.1175/JTECH1749.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, doi:10.1175/BAMS-88-10-1608.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by cloud and precipitation. J. Atmos. Oceanic Technol., 7, 464479, doi:10.1175/1520-0426(1990)007<0464:AASOMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci.,28, 702–708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci.,29, 1109–1123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

  • Matrosov, S. Y., 2005: Attenuation-based estimates of rainfall rates aloft with vertically pointing Ka-band radars. J. Atmos. Oceanic Technol., 22, 4354, doi:10.1175/JTECH-1677.1.

    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen (Contribution to the optics of suspended media, specifically colloidal metal suspensions). Ann. Phys., 330, 377445, doi:10.1002/andp.19083300302.

    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., T. Ackerman, and R. Marchand, 2006: Evaluation of the multiscale framework using data from the Atmospheric Radiation Measurement Program. J. Climate, 19, 17161729, doi:10.1175/JCLI3699.1.

    • Search Google Scholar
    • Export Citation
  • Penide, G., V. V. Kumar, A. Protat, and P. T. May, 2013: Statistics of drop size distribution parameters and rain rates for stratiform and convective precipitation during the north Australian wet season. Mon. Wea. Rev., 141, 3222–3237, doi:10.1175/MWR-D-12-00262.1.

    • Search Google Scholar
    • Export Citation
  • Riihimaki, L. D., and C. N. Long, 2014: Spatial variability of surface irradiance measurements at the Manus ARM site. J. Geophys. Res. Atmos., 119, 54755491, doi:10.1002/2013JD021187.

    • Search Google Scholar
    • Export Citation
  • Rondanelli, R., and R. S. Lindzen, 2008: Observed variations in convective precipitation fraction and stratiform area with sea surface temperature. J. Geophys. Res., 113, D16119, doi:10.1029/2008JD010064.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and E. Amitai, 1998: Comparison of WPMM versus regression for evaluating Z–R relationships. J. Appl. Meteor., 37, 12411249, doi:10.1175/1520-0450(1998)037<1241:COWVRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Meteor. Monogr., No. 30, Amer. Meteor. Soc., 237–237, doi:10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2.

  • Rutledge, S. A., and R. A. Houze Jr., 1987: A diagnostic modeling study of the trailing stratiform region of a midlatitude squall line. J. Atmos. Sci., 44, 26402656, doi:10.1175/1520-0469(1987)044<2640:ADMSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. R. Campbell, J. Zhu, P. Kollias, M. Shupe, and C. Williams, 2005: Lidar and triple-wavelength Doppler radar measurements of the melting layer: A revised model for dark and brightband phenomena. J. Appl. Meteor., 44, 301312, doi:10.1175/JAM-2197.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M. R., and R. A. Houze Jr., 1997: Sensitivity of the estimated monthly convective rain fraction to the choice of Z–R relation. J. Appl. Meteor., 36, 452462, doi:10.1175/1520-0450(1997)036<0452:SOTEMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M. R., and J. A. Smith, 2000: Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. J. Appl. Meteor., 39, 19231940, doi:10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M. R., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M. R., J. A. Smith, and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61, 11141131, doi:10.1175/1520-0469(2004)061<1114:AMIORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stout, G. E., and E. A. Mueller, 1968: Survey of relationship between rainfall rate and radar reflectivity in the measurement of precipitation. J. Appl. Meteor., 7, 465474, doi:10.1175/1520-0450(1968)007<0465:SORBRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., S. Lang, J. Simpson, and R. Adler, 1993: Retrieval algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan, 71, 685700.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, and P. T. May, 2010: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932942, doi:10.1175/2010JTECHA1349.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. A. Short, C. R. Williams, W. L. Ecklund, and K. S. Gage, 1999: Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteor., 38, 302320, doi:10.1175/1520-0450(1999)038<0302:TRAWCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., W. L. Ecklund, and K. S. Gage, 1995: Classification of precipitation clouds in the tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12, 9961012, doi:10.1175/1520-0426(1995)012<0996:COPCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S., M. Zhang, J. S. Boyle, R. T. Cederwall, G. L. Potter, and W. Lin, 2004: Impact of a revised convective triggering mechanism on Community Atmosphere Model, version 2, simulations: Results from short-range weather forecasts. J. Geophys. Res., 109, D14102, doi:10.1029/2004JD004692.

    • Search Google Scholar
    • Export Citation
  • Yoneyana, K., D. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc.,94, 1871–1891, doi:10.1175/BAMS-D-12-00157.1.

  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1997: Measurements of raindrop size distribution over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteor., 36, 847867, doi:10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and R. A. Houze Jr., 2013: Evolution of population of precipitation convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, doi:10.1175/JAS-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 563 111 10
PDF Downloads 398 60 3