A Case Study of Mid-Atlantic Nocturnal Boundary Layer Events during WAVES 2006

S. Rabenhorst Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by S. Rabenhorst in
Current site
Google Scholar
PubMed
Close
,
D. N. Whiteman Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by D. N. Whiteman in
Current site
Google Scholar
PubMed
Close
,
D.-L. Zhang Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by D.-L. Zhang in
Current site
Google Scholar
PubMed
Close
, and
B. Demoz Department of Physics and Astronomy, Howard University, Washington, D.C.

Search for other papers by B. Demoz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Water Vapor Variability-Satellite/Sondes (WAVES) 2006 field campaign provided a contiguous 5-day period of concentrated high-resolution measurements to examine finescale boundary layer phenomena under the influence of a summertime subtropical high over the mid-Atlantic region that is characterized by complex geography. A holistic analytical approach to low-level wind observations was adopted to identify the low-level flow structures and patterns of evolution on the basis of airmass properties and origination. An analysis of the measurements and the other available observations is consistent with the classic depiction of the daytime boundary layer development but revealed a pronounced diurnal cycle that was categorized into three stages: (i) daytime growth of the convective boundary layer, (ii) flow intensification into a low-level jet regime after dusk, and (iii) interruption by a downslope wind regime after midnight. The use of the field campaign data allows for the differentiation of the latter two flow regimes by their directions with respect to the orientation of the Appalachian Mountains and their airmass origins. Previous studies that have investigated mountain flows and low-level jet circulations have focused on regions with overt geographic prominence, stark gradients, or frequent reoccurrences, whereby such meteorological phenomena exhibit a clear signature and can be easily isolated and diagnosed. The results of this study provide evidence that similar circulation patterns operate in nonclassic locations with milder topography and atmospheric gradients, such as the mid-Atlantic region. The new results have important implications for the understanding of the mountain-forced flows and some air quality problems during the nocturnal period.

Corresponding author address: S. Rabenhorst, Dept. of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250. E-mail: sraben1@umbc.edu

Abstract

The Water Vapor Variability-Satellite/Sondes (WAVES) 2006 field campaign provided a contiguous 5-day period of concentrated high-resolution measurements to examine finescale boundary layer phenomena under the influence of a summertime subtropical high over the mid-Atlantic region that is characterized by complex geography. A holistic analytical approach to low-level wind observations was adopted to identify the low-level flow structures and patterns of evolution on the basis of airmass properties and origination. An analysis of the measurements and the other available observations is consistent with the classic depiction of the daytime boundary layer development but revealed a pronounced diurnal cycle that was categorized into three stages: (i) daytime growth of the convective boundary layer, (ii) flow intensification into a low-level jet regime after dusk, and (iii) interruption by a downslope wind regime after midnight. The use of the field campaign data allows for the differentiation of the latter two flow regimes by their directions with respect to the orientation of the Appalachian Mountains and their airmass origins. Previous studies that have investigated mountain flows and low-level jet circulations have focused on regions with overt geographic prominence, stark gradients, or frequent reoccurrences, whereby such meteorological phenomena exhibit a clear signature and can be easily isolated and diagnosed. The results of this study provide evidence that similar circulation patterns operate in nonclassic locations with milder topography and atmospheric gradients, such as the mid-Atlantic region. The new results have important implications for the understanding of the mountain-forced flows and some air quality problems during the nocturnal period.

Corresponding author address: S. Rabenhorst, Dept. of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250. E-mail: sraben1@umbc.edu
Save
  • Adam, M., and Coauthors, 2010: Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign. J. Atmos. Oceanic Technol., 27, 42–60, doi:10.1175/2009JTECHA1331.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, K. J. Claffy, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor., 97, 459–486, doi:10.1023/A:1002793831076.

    • Search Google Scholar
    • Export Citation
  • Baas, P., F. C. Bosveld, H. K. Baltink, and A. A. M. Holtslag, 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor. Climatol., 48, 1627–1642, doi:10.1175/2009JAMC1965.1.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., and T. B. McKee, 1992: Mesoscale boundary-layer evolution over complex terrain. Part II: Factors controlling nocturnal boundary-layer structure. Mon. Wea. Rev., 120, 802–816, doi:10.1175/1520-0493(1992)120<0802:MBLEOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221–252, doi:10.1023/A:1019992330866.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283–290.

    • Search Google Scholar
    • Export Citation
  • Blier, W., 1998: The sundowner winds of Santa Barbara, California. Wea. Forecasting, 13, 702–716, doi:10.1175/1520-0434(1998)013<0702:TSWOSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833–850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brinkmann, W. A. R., 1974: Strong downslope winds at Boulder, Colorado. Mon. Wea. Rev., 102, 592–602, doi:10.1175/1520-0493(1974)102<0592:SDWABC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 1998: Windstorms along the western side of the Washington Cascade Mountains. Part I: A high-resolution observational and modeling study of the 12 February 1995 event. Mon. Wea. Rev., 126, 28–52, doi:10.1175/1520-0493(1998)126<0028:WATWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and D. R. Novak, 2010: The New York Bight jet: Climatology and dynamical evolution. Mon. Wea. Rev., 138, 2385–2404, doi:10.1175/2009MWR3231.1.

    • Search Google Scholar
    • Export Citation
  • Colman, B. R., and C. F. Dierking, 1992: The taku wind of southeast Alaska: Its identification and prediction. Wea. Forecasting, 7, 49–64, doi:10.1175/1520-0434(1992)007<0049:TTWOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Decker, S. G., and D. A. Robinson, 2011: Unexpected high winds in northern New Jersey: A downslope windstorm in modest topography. Wea. Forecasting, 26, 902–921, doi:10.1175/WAF-D-10-05052.1.

    • Search Google Scholar
    • Export Citation
  • Delgado, R., S. D. Rabenhorst, B. B. Demoz, and R. M. Hoff, 2014: Elastic lidar measurements of summer nocturnal low level jet events over Baltimore, Maryland. J. Atmos. Chem., doi:10.1007/s10874-013-9277-2, in press.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2003: Downslope winds. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. Pyle, and J. A. Curry, Eds., Elsevier, 1161–1170.

  • Ferrare, R., and Coauthors, 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Gaffin, D. M., 2009: On high winds and foehn warming associated with mountain-wave events in the western foothills of the southern Appalachian Mountains. Wea. Forecasting, 24, 53–75, doi:10.1175/2008WAF2007096.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon. Wea. Rev., 134, 251–271, doi:10.1175/MWR3056.1.

    • Search Google Scholar
    • Export Citation
  • Godowitch, J. M., J. K. S. Ching, and J. F. Clarke, 1985: Evolution of the nocturnal inversion layer at an urban and nonurban location. J. Climate Appl. Meteor., 24, 791–804, doi:10.1175/1520-0450(1985)024<0791:EOTNIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., F. H. Blair, S. E. Bisson, and D. D. Turner, 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 4979–4990, doi:10.1364/AO.37.004979.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., M. Sharan, R. T. McNider, and M. P. Singh, 1998: Study of radiative and turbulent processes in the stable boundary layer under weak wind conditions. J. Atmos. Sci., 55, 954–960, doi:10.1175/1520-0469(1998)055<0954:SORATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., and D. BeluÅ¡ić, 2009: A review of recent advances in understanding the meso- and microscale properties of the severe bora wind. Tellus, 61A, 1–16, doi:10.1111/j.1600-0870.2008.00369.x.

    • Search Google Scholar
    • Export Citation
  • Grubisic, V., and M. Xiao, 2006: Climatology of westerly wind events in the lee of the Sierra Nevada. Preprints, 12th Conf. on Mountain Meteorology, Santa Fe, NM, Amer. Meteor. Soc., P2.8. [Available online at https://ams.confex.com/ams/pdfpapers/114755.pdf.]

  • Haman, C. L., B. Lefer, and G. A. Morris, 2012: Seasonal variability in the diurnal evolution of the boundary layer in a near coastal urban environment. J. Atmos. Oceanic Technol., 29, 697–710, doi:10.1175/JTECH-D-11-00114.1.

    • Search Google Scholar
    • Export Citation
  • Hilliker, J. L., G. Akasapu, and G. S. Young, 2010: Assessing the short-term forecast capability of nonstandardized surface observations using the National Digital Forecast Database (NDFD). J. Appl. Meteor. Climatol., 49, 1397–1411, doi:10.1175/2010JAMC2137.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199–205, doi:10.1111/j.2153-3490.1967.tb01473.x.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., N.-C. Lau, I. M. Held, and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64, 532–547, doi:10.1175/JAS3847.1.

    • Search Google Scholar
    • Export Citation
  • Jones, H. G., 1983: Plants and Microclimate: A Quantitative Approach to Environmental Physiology. Cambridge University Press, 323 pp.

  • Karipot, A., M. Y. Leclerc, and G. Zhang, 2009: Characteristics of nocturnal low-level jets observed in the north Florida area. Mon. Wea. Rev., 137, 2605–2621, doi:10.1175/2009MWR2705.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. R. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320–339, doi:10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koletsis, I., K. Lagouvardos, V. Kotroni, and A. Bartzokas, 2009: Numerical study of a downslope windstorm in northwestern Greece. Atmos. Res., 94, 178–193, doi:10.1016/j.atmosres.2009.05.012.

    • Search Google Scholar
    • Export Citation
  • Kumar, M. S., V. K. Anandan, T. N. Rao, and P. N. Reddy, 2012: A climatological study of the nocturnal boundary layer over a complex-terrain station. J. Appl. Meteor. Climatol., 51, 813–825, doi:10.1175/JAMC-D-11-047.1.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., 2002: Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteor., 41, 1247–1266, doi:10.1175/1520-0450(2002)041<1247:NSOUIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., D. Whiteman, and R. Ferrare, 1989: Observation of atmospheric fronts using Raman lidar moisture measurements. J. Appl. Meteor., 28, 789–806, doi:10.1175/1520-0450(1989)028<0789:OOAFUR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., J. S. Snook, D. A. Wesley, and G. S. Poulos, 2003: A Rocky Mountain storm. Part II: The forest blowdown over the west slope of the northern Colorado mountains—Observations, analysis, and modeling. Wea. Forecasting, 18, 662–674, doi:10.1175/1520-0434(2003)018<0662:ARMSPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nkemdirim, L. C., 1986: Chinooks in southern Alberta: Some distinguishing nocturnal features. J. Climatol., 6, 593–603, doi:10.1002/joc.3370060603.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and L. D. Oolman, 2010: On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci., 67, 2690–2699, doi:10.1175/2010JAS3368.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., A. R. Rodi, and R. D. Clark, 1988: A case study of the summertime Great Plains low level jet. Mon. Wea. Rev., 116, 94–105, doi:10.1175/1520-0493(1988)116<0094:ACSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rama Krishna, T. B. P. S. R., M. Sharan, S. G. Gopalakrishnan, and Aditi, 2003: Mean structure of the nocturnal boundary layer under strong and weak wind conditions: EPRI case study. J. Appl. Meteor., 42, 952–969, doi:10.1175/1520-0450(2003)042<0952:MSOTNB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2003: The Santa Ana winds of California. Earth Interact., 7, doi:10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2.

  • Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 5041–5064, doi:10.1175/2010JCLI3514.1.

    • Search Google Scholar
    • Export Citation
  • Ryan, W. F., and Coauthors, 1998: Pollutant transport during a regional O3 episode in the mid-Atlantic states. J. Air Waste Manage. Assoc., 48, 786–797, doi:10.1080/10473289.1998.10463737.

    • Search Google Scholar
    • Export Citation
  • Sakiyama, S. K., 1990: Drainage flow characteristics and inversion breakup in two Alberta mountain valleys. J. Appl. Meteor., 29, 1015–1030, doi:10.1175/1520-0450(1990)029<1015:DFCAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2005: A review of cold fronts with prefrontal troughs and wind shifts. Mon. Wea. Rev., 133, 2449–2472, doi:10.1175/MWR2987.1.

    • Search Google Scholar
    • Export Citation
  • Seaman, N. L., B. J. Gaudet, D. R. Stauffer, L. Mahrt, S. J. Richardson, J. R. Zielonka, and J. C. Wyngaard, 2012: Numerical prediction of submesoscale flow in the nocturnal stable boundary layer over complex terrain. Mon. Wea. Rev., 140, 956–977, doi:10.1175/MWR-D-11-00061.1.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., F. A. Norte, P. Satyamurty, and S. C. Chou, 2003: Analysis of three situations of the foehn effect over the Andes (zonda wind) using the Eta–CPTEC regional model. Wea. Forecasting, 18, 481–501, doi:10.1175/1520-0434(2003)18<481:AOTSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sjostedt, D. W., J. T. Sigmon, and S. J. Colucci, 1990: The Carolina nocturnal low-level jet: Synoptic climatology and a case study. Wea. Forecasting, 5, 404–415, doi:10.1175/1520-0434(1990)005<0404:TCNLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, C. M., and E. D. Skyllingstad, 2009: Investigation of upstream boundary layer influence on mountain wave breaking and lee wave rotors using a large-eddy simulation. J. Atmos. Sci., 66, 3147–3164, doi:10.1175/2009JAS2949.1.

    • Search Google Scholar
    • Export Citation
  • Smith, C. M., and E. D. Skyllingstad, 2011: Effects of inversion height and surface heat flux on downslope windstorms. Mon. Wea. Rev., 139, 3750–3764, doi:10.1175/2011MWR3619.1.

    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the southern Great Plains atmospheric boundary layer experiments site. J. Appl. Meteor., 44, 1593–1606, doi:10.1175/JAM2294.1.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Turner, D. D., W. F. Feltz, and R. A. Ferrare, 2000: Continuous water vapor profiles from operational ground-based active and passive remote sensors. Bull. Amer. Meteor. Soc., 81, 1301–1317, doi:10.1175/1520-0477(2000)081<1301:CWBPFO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verghese, S. J., S. N. Kizhakkemadam, A. Willitsford, J. P. Collier, S. Unni, and C. R. Philbrick, 2003: Characterization of nocturnal jets over Philadelphia during air pollution episodes. Preprints, Fifth Conf. on Atmospheric Chemistry, Long Beach, CA, Amer. Meteor. Soc., 6.10. [Available online at https://ams.confex.com/ams/pdfpapers/57487.pdf.]

  • Whiteman, C. D., and X. Bian, 1996: Solar semidiurnal tides in the troposphere: Detection by radar profilers. Bull. Amer. Meteor. Soc., 77, 529–542, doi:10.1175/1520-0477(1996)077<0529:SSTITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 1363–1376, doi:10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., 2003: Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Appl. Opt., 42, 2571–2592, doi:10.1364/AO.42.002571.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 1992: Advanced Raman water vapor lidar. 16th Laser Radar Conf., Cambridge, MA, NASA Conf. Publ. 3158, 483–484.

  • Whiteman, D. N., and Coauthors, 2004: NASA/GSFC Scanning Raman Lidar measurements of water vapor and clouds during IHOP. 22nd Int. Laser Radar Conf., Matera, Italy, Optical Society of America, 337.

  • Whiteman, D. N., and Coauthors, 2006: Raman lidar measurements during the International H2O Project. Part I: Instrumentation and analysis techniques. J. Atmos. Oceanic Technol., 23, 157–169, doi:10.1175/JTECH1838.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and W.-Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157–169, doi:10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., S. Zhang, and S. J. Weaver, 2006: Low-level jets over the mid-Atlantic states: Warm-season climatology and a case study. J. Appl. Meteor. Climatol., 45, 194–209, doi:10.1175/JAM2313.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 59 3
PDF Downloads 105 25 0