Study of a Sea-Breeze Case through Momentum, Temperature, and Turbulence Budgets

J. Cuxart University of the Balearic Islands, Palma de Mallorca, Spain

Search for other papers by J. Cuxart in
Current site
Google Scholar
PubMed
Close
,
M. A. Jiménez Mediterranean Institute for Advanced Studies (IMEDEA), Esporles, Spain

Search for other papers by M. A. Jiménez in
Current site
Google Scholar
PubMed
Close
,
M. Telišman Prtenjak Faculty of Sciences, University of Zagreb, Zagreb, Croatia

Search for other papers by M. Telišman Prtenjak in
Current site
Google Scholar
PubMed
Close
, and
B. Grisogono Faculty of Sciences, University of Zagreb, Zagreb, Croatia

Search for other papers by B. Grisogono in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simulation with the Méso-NH model over the island of Mallorca, Spain, has been made in a case of synoptic high pressure (5 June 2010) that allowed the development of sea breezes (SB) in the three main basins of the island. The results compare well to the available observations and are qualitatively very close to a previous idealized study with no synoptic forcing made by Ramis and Romero in 1995. The temporal and spatial structure of the SB in the southeastern basin is analyzed with the use of the momentum, temperature, and turbulence kinetic energy budgets provided by the numerical model. Five stages of evolution from before dawn to after sunset are discussed, identifying the main physical mechanisms at play. The morning land heating warms the land and the air over it until an air temperature gradient is created and a marine flow accelerates inland, dragged by turbulence in the low layers. The upper part of the inland current and the layers just above are dominated by compensatory motions, which oppose the corresponding pressure gradient at these levels. These mechanisms last while the SB is active, with significant effects from the local topography, and they decrease in intensity as sunset approaches. This relatively simple case has been used to check the goodness of two analytical models of the SB that perform relatively well because they use turbulence as a surrogate for the missing advection terms in the layers above 200 m. These models are formulated here in a more consistent manner in the turbulence parameterization than were the original propositions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0007.s1.

Corresponding author address: J. Cuxart, Faculty of Sciences, University of the Balearic Islands, Carret. Valldemossa km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain. E-mail: joan.cuxart@uib.cat

Abstract

A simulation with the Méso-NH model over the island of Mallorca, Spain, has been made in a case of synoptic high pressure (5 June 2010) that allowed the development of sea breezes (SB) in the three main basins of the island. The results compare well to the available observations and are qualitatively very close to a previous idealized study with no synoptic forcing made by Ramis and Romero in 1995. The temporal and spatial structure of the SB in the southeastern basin is analyzed with the use of the momentum, temperature, and turbulence kinetic energy budgets provided by the numerical model. Five stages of evolution from before dawn to after sunset are discussed, identifying the main physical mechanisms at play. The morning land heating warms the land and the air over it until an air temperature gradient is created and a marine flow accelerates inland, dragged by turbulence in the low layers. The upper part of the inland current and the layers just above are dominated by compensatory motions, which oppose the corresponding pressure gradient at these levels. These mechanisms last while the SB is active, with significant effects from the local topography, and they decrease in intensity as sunset approaches. This relatively simple case has been used to check the goodness of two analytical models of the SB that perform relatively well because they use turbulence as a surrogate for the missing advection terms in the layers above 200 m. These models are formulated here in a more consistent manner in the turbulence parameterization than were the original propositions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0007.s1.

Corresponding author address: J. Cuxart, Faculty of Sciences, University of the Balearic Islands, Carret. Valldemossa km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain. E-mail: joan.cuxart@uib.cat
Save
  • Antonelli, M., and R. Rotunno, 2007: Large-eddy simulation of the onset of the sea breeze. J. Atmos. Sci., 64, 44454457, doi:10.1175/2007JAS2261.1.

    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., B. H. Connell, and R. Baena-Calatrava, 2009: Sea-breeze convergence zones from AVHRR over the Iberian Mediterranean area and the Isle of Mallorca, Spain. J. Appl. Meteor. Climatol., 48, 20692085, doi:10.1175/2009JAMC2141.1.

    • Search Google Scholar
    • Export Citation
  • Bastin, S., P. Drobinski, A. Dabas, P. Delville, O. Reitebuch, and C. Werner, 2005: Impact of the Rhône and Durance valleys on sea-breeze circulation in the Marseille area. Atmos. Res., 74, 303328, doi:10.1016/j.atmosres.2004.04.014.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Search Google Scholar
    • Export Citation
  • Belamari, S., 2005: Report on uncertainty estimates of an optimal bulk formulation for surface turbulent fluxes. Marine Environment and Security for the European Area Integrated Project (MERSEA IP) Deliverable D.4.1.2, 29 pp.

  • Bougeault, P., and P. Lacarrère, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942415, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, doi:10.1007/s10546-010-9517-9.

    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2012: Idealized large-eddy simulations of sea and lake breezes: Sensitivity to lake diameter, heat flux and stability. Bound.-Layer Meteor., 144, 309328, doi:10.1007/s10546-012-9721-x.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and M. A. Jiménez, 2007: Mixing processes in a nocturnal low-level jet: An LES study. J. Atmos. Sci., 64, 16661679, doi:10.1175/JAS3903.1.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and M. A. Jiménez, 2012: Deep radiation fog in a wide closed valley: Study by numerical modeling and remote sensing. Pure Appl. Geophys., 169, 911926, doi:10.1007/s00024-011-0365-4.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, doi:10.1002/qj.49712656202.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273303, doi:10.1007/s10546-005-3780-1.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., M. A. Jiménez, and D. Martínez, 2007: Nocturnal meso-beta basin and katabatic flows on a midlatitude island. Mon. Wea. Rev., 135, 918932, doi:10.1175/MWR3329.1.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., R. M. Banta, and R. A. Pielke, 2002: Comparisons between mesoscale model terrain sensitivity studies and Doppler lidar measurements of the sea breeze at Monterey Bay. Mon. Wea. Rev., 130, 28132838, doi:10.1175/1520-0493(2002)130<2813:CBMMTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Defant, F., 1950: Theorie der Land- und Seewinde (Theory of the land and sea breezes). Arch. Meteor. Geophys. Bioklimatol., 2A, 404425, doi:10.1007/BF02247322.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., R. Rotunno, and T. Dubos, 2011: Linear theory of the sea breeze in a thermal wind. Quart. J. Roy. Meteor. Soc., 137, 16021609, doi:10.1002/qj.847.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., 1988: The sea-breeze front analytical model. J. Atmos. Sci., 45, 10301038, doi:10.1175/1520-0469(1988)045<1030:TSBFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Finkele, K., J. M. Hacker, H. Kraus, and R. A. D. Byron-Scott, 1995: A complete sea-breeze circulation cell derived from aircraft observations. Bound.-Layer Meteor., 73, 299317, doi:10.1007/BF00711261.

    • Search Google Scholar
    • Export Citation
  • Fock, B. H., and K. H. Schlünzen, 2012: Characterization of typical coastal circulations with high-resolution measurements in the Gulf of Valencia. Int. J. Climatol., 32, 13921405, doi:10.1002/joc.2362.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the earth’s atmosphere: A new parametrization. Beitr. Phys. Atmos., 53, 3562.

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., and J. Oerlemans, 2001: Katabatic flow: Analytic solution for gradually varying eddy diffusivities. J. Atmos. Sci., 58, 33493354, doi:10.1175/1520-0469(2001)058<3349:KFASFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., L. Ström, and M. Tjernström, 1998: Small-scale variability in the coastal atmospheric boundary layer. Bound.-Layer Meteor., 88, 2346, doi:10.1023/A:1000933822432.

    • Search Google Scholar
    • Export Citation
  • Gutman, L. N., 1972: Introduction to the Nonlinear Theory of Mesoscale Meteorological Processes. Keter Press, 224 pp.

  • Hernández-Ceballos, M. A., J. A. Adame, J. P. Bolívar, and B. A. De la Morena, 2013: A mesoscale simulation of coastal circulation in the Guadalquivir valley (southwestern Iberian Peninsula) using the WRF-ARW model. Atmos. Res., 124, 120, doi:10.1016/j.atmosres.2012.12.002.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and J. L. McBride, 1989: Quasi-trajectory analysis of a sea-breeze front. Quart. J. Roy. Meteor. Soc., 115, 571580, doi:10.1002/qj.49711548708.

    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, doi:10.1175/JAS-D-11-061.1.

    • Search Google Scholar
    • Export Citation
  • Jansà, J. M., and E. Jaume, 1946: The sea breeze regime in the Mallorca island (in Spanish). Rev. Geofis., 19, 304328.

  • Jeričević, A., L. Kraljević, B. Grisogono, H. Fagerli, and Ž. Večenaj, 2010: Parameterization of vertical diffusion and the atmospheric boundary layer height determination in the EMEP model. Atmos. Chem. Phys., 10, 341364, doi:10.5194/acp-10-341-2010.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2012: A linear theory of three-dimensional land–sea breezes. J. Atmos. Sci., 69, 18901909, doi:10.1175/JAS-D-11-0137.1.

  • Jiménez, M. A., and J. Cuxart, 2005: Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: Range of applicability. Bound.-Layer Meteor., 115, 241261, doi:10.1007/s10546-004-3470-4.

    • Search Google Scholar
    • Export Citation
  • Jiménez, M. A., A. Mira, J. Cuxart, A. Luque, S. Alonso, and J. A. Guijarro, 2008: Verification of a clear-sky mesoscale simulation using satellite-derived surface temperatures. Mon. Wea. Rev., 136, 51485161, doi:10.1175/2008MWR2461.1.

    • Search Google Scholar
    • Export Citation
  • Kala, J., T. J. Lyons, D. J. Abbs, and U. S. Nair, 2010: Numerical simulations of the impacts of land-cover change on a southern sea breeze in south-west Western Australia. Bound.-Layer Meteor., 135, 485503, doi:10.1007/s10546-010-9486-z.

    • Search Google Scholar
    • Export Citation
  • Kottmeier, C., P. Palacio-Sese, N. Kalthoff, U. Corsmeier, and F. Fiedler, 2000: Sea breezes and coastal jets in southeastern Spain. Int. J. Climatol., 20, 17911808, doi:10.1002/1097-0088(20001130)20:14<1791::AID-JOC574>3.0.CO;2-I.

    • Search Google Scholar
    • Export Citation
  • Kozo, T. L., 1982: An observational study of sea breezes along the Alaskan Beaufort Sea coast: Part I. J. Appl. Meteor., 21, 891905, doi:10.1175/1520-0450(1982)021<0891:AOSOSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1998: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, doi:10.1007/s00585-997-0090-6.

    • Search Google Scholar
    • Export Citation
  • Mahrer, Y., and M. Segal, 1985: On the effects of islands’ geometry and size on inducing sea breeze circulation. Mon. Wea. Rev., 113, 170174, doi:10.1175/1520-0493(1985)113<0170:OTEOIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martínez, D., M. A. Jiménez, J. Cuxart, and L. Mahrt, 2010: Heterogeneous nocturnal cooling in a large basin under very stable conditions. Bound.-Layer Meteor., 137, 97113, doi:10.1007/s10546-010-9522-z.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357397, doi:10.1023/A:1002463829265.

    • Search Google Scholar
    • Export Citation
  • Masson, V., J.-L. Champeaux, F. Chauvin, C. Meriguet, and R. Lacaze, 2003: A global database of land surface parameters at 1-km resolution for use in meteorological and climate models. J. Climate, 16, 12611282, doi:10.1175/1520-0442-16.9.1261.

    • Search Google Scholar
    • Export Citation
  • Millán, M. M., R. Salvador, E. Mantilla, and G. Kallos, 1997: Photooxidant dynamics in the Mediterranean basin in summer: Results from European research projects. J. Geophys. Res., 102, 88118827, doi:10.1029/96JD03610.

    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, doi:10.1029/2003RG000124.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., 1990: Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon. Wea. Rev., 118, 847873, doi:10.1175/1520-0493(1990)118<0847:IOCTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Navascués, B., and Coauthors, 2013: Long-term verification of HIRLAM and ECMWF forecasts over southern Europe: History and perspectives of numerical weather prediction at AEMET. Atmos. Res., 125–126, 2033, doi:10.1016/j.atmosres.2013.01.010.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., and H. Kida, 2002: Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. J. Appl. Meteor., 41, 3045, doi:10.1175/1520-0450(2002)041<0030:LCDITV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 1984: Mesoscale Meteorological Modeling. Academic Press, 612 pp.

  • Prtenjak, M. T., and B. Grisogono, 2002: Idealised numerical simulations of diurnal sea breeze characteristics over a step change in roughness. Meteor. Z., 11, 345360, doi:10.1127/0941-2948/2002/0011-0345.

    • Search Google Scholar
    • Export Citation
  • Prtenjak, M. T., B. Grisogono, and T. Nitis, 2006: Shallow mesoscale flows at the north-eastern Adriatic coast. Quart. J. Roy. Meteor. Soc., 132, 21912216, doi:10.1256/qj.05.41.

    • Search Google Scholar
    • Export Citation
  • Prtenjak, M. T., Z. Pasarić, M. Orlić, and B. Grisogono, 2008: Rotation of sea/land breezes along the northeastern Adriatic coast. Ann. Geophys., 26, 17111724, doi:10.5194/angeo-26-1711-2008.

    • Search Google Scholar
    • Export Citation
  • Qian, T., C. C. Epifanio, and F. Zhang, 2012: Topographic effects on the tropical land and sea breeze. J. Atmos. Sci., 69, 130149, doi:10.1175/JAS-D-11-011.1.

    • Search Google Scholar
    • Export Citation
  • Ramis, C., and R. Romero, 1995: A first numerical simulation of the development and structure of the sea breeze on the island of Mallorca. Ann. Geophys., 13, 981994, doi:10.1007/s00585-995-0981-3.

    • Search Google Scholar
    • Export Citation
  • Ramis, C., A. Jansà, and S. Alonso, 1990: Sea breeze in Mallorca. A numerical study. Meteor. Atmos. Phys., 42, 249258, doi:10.1007/BF01314828.

    • Search Google Scholar
    • Export Citation
  • Reuter, H. I., A. Nelson, and A. Jarvis, 2007: An evaluation of void-filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci., 21, 9831008, doi:10.1080/13658810601169899.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., M.-D. Patterson, and S. C. Sherwood, 2013: A numerical modeling study of the propagation of idealized sea-breeze density currents. J. Atmos. Sci., 70, 653668, doi:10.1175/JAS-D-12-0113.1.

    • Search Google Scholar
    • Export Citation
  • Romero, R., and C. Ramis, 1996: A numerical study of the transport and diffusion of coastal pollutants during the breeze cycle in the island of Mallorca. Ann. Geophys., 14, 351363, doi:10.1007/s00585-996-0351-9.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40, 19992009, doi:10.1175/1520-0469(1983)040<1999:OTLTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., and M. Fujiwara, 2008: Diurnal variations in summertime surface wind upon Japanese plains: Hodograph rotation and its dynamics. J. Meteor. Soc. Japan, 86, 787803, doi:10.2151/jmsj.86.787.

    • Search Google Scholar
    • Export Citation
  • Savijarvi, H., 1985: The sea breeze and urban heat island circulation in a numerical model. Geophysica, 21, 115126.

  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., and R. E. Britter, 1980: A laboratory model of an atmospheric mesofront. Quart. J. Roy. Meteor. Soc., 106, 485500, doi:10.1002/qj.49710644907.

    • Search Google Scholar
    • Export Citation
  • Steele, C. J., S. R. Dorling, R. von Glasow, and J. Bacon, 2013: Idealized WRF Model sensitivity simulations of sea breeze types and their effects on offshore windfields. Atmos. Chem. Phys., 13, 443461, doi:10.5194/acp-13-443-2013.

    • Search Google Scholar
    • Export Citation
  • Talbot, C., P. Augustin, C. Leroy, V. Willart, H. Delbarre, and G. Khomenko, 2007: Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Bound.-Layer Meteor., 125, 133154, doi:10.1007/s10546-007-9185-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 462 177 14
PDF Downloads 466 122 10