A Synergistic Analysis of Cloud Cover and Vertical Distribution from A-Train and Ground-Based Sensors over the High Arctic Station Eureka from 2006 to 2010

Yann Blanchard Laboratoire Atmosphères, Milieux, Observations Spatiales, UPMC-UVSQ-CNRS, Paris, France

Search for other papers by Yann Blanchard in
Current site
Google Scholar
PubMed
Close
,
Jacques Pelon Laboratoire Atmosphères, Milieux, Observations Spatiales, UPMC-UVSQ-CNRS, Paris, France

Search for other papers by Jacques Pelon in
Current site
Google Scholar
PubMed
Close
,
Edwin W. Eloranta Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Edwin W. Eloranta in
Current site
Google Scholar
PubMed
Close
,
Kenneth P. Moran Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Kenneth P. Moran in
Current site
Google Scholar
PubMed
Close
,
Julien Delanoë Laboratoire Atmosphères, Milieux, Observations Spatiales, UPMC-UVSQ-CNRS, Paris, France

Search for other papers by Julien Delanoë in
Current site
Google Scholar
PubMed
Close
, and
Geneviève Sèze Laboratoire de Météorologie Dynamique du CNRS, Ecole Polytechnique, Palaiseau, France

Search for other papers by Geneviève Sèze in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Active remote sensing instruments such as lidar and radar allow one to accurately detect the presence of clouds and give information on their vertical structure and phase. To better address cloud radiative impact over the Arctic area, a combined analysis based on lidar and radar ground-based and A-Train satellite measurements was carried out to evaluate the efficiency of cloud detection, as well as cloud type and vertical distribution, over the Eureka station (80°N, 86°W) between June 2006 and May 2010. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat data were first compared with independent ground-based cloud measurements. Seasonal and monthly trends from independent observations were found to be similar among all datasets except when compared with the weather station observations because of the large reported fraction of ice crystals suspended in the lower troposphere in winter. Further investigations focused on satellite observations that are collocated in space and time with ground-based data. Cloud fraction occurrences from ground-based instruments correlated well with both CALIPSO operational products and combined CALIPSOCloudSat retrievals, with a hit rate of 85%. The hit rate was only 77% for CloudSat products. The misdetections were mainly attributed to 1) undetected low-level clouds as a result of sensitivity loss and 2) missed clouds because of the distance between the satellite track and the station. The spaceborne lidar–radar synergy was found to be essential to have a complete picture of the cloud vertical profile down to 2 km. Errors are quantified and discussed.

Corresponding author address: Yann Blanchard, LATMOS, Boîte 102, Université Pierre et Marie, Curie, 4 place Jussieu, 75252 Paris CEDEX 05, France. E-mail: yann.blanchard@latmos.ipsl.fr

Abstract

Active remote sensing instruments such as lidar and radar allow one to accurately detect the presence of clouds and give information on their vertical structure and phase. To better address cloud radiative impact over the Arctic area, a combined analysis based on lidar and radar ground-based and A-Train satellite measurements was carried out to evaluate the efficiency of cloud detection, as well as cloud type and vertical distribution, over the Eureka station (80°N, 86°W) between June 2006 and May 2010. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat data were first compared with independent ground-based cloud measurements. Seasonal and monthly trends from independent observations were found to be similar among all datasets except when compared with the weather station observations because of the large reported fraction of ice crystals suspended in the lower troposphere in winter. Further investigations focused on satellite observations that are collocated in space and time with ground-based data. Cloud fraction occurrences from ground-based instruments correlated well with both CALIPSO operational products and combined CALIPSOCloudSat retrievals, with a hit rate of 85%. The hit rate was only 77% for CloudSat products. The misdetections were mainly attributed to 1) undetected low-level clouds as a result of sensitivity loss and 2) missed clouds because of the distance between the satellite track and the station. The spaceborne lidar–radar synergy was found to be essential to have a complete picture of the cloud vertical profile down to 2 km. Errors are quantified and discussed.

Corresponding author address: Yann Blanchard, LATMOS, Boîte 102, Université Pierre et Marie, Curie, 4 place Jussieu, 75252 Paris CEDEX 05, France. E-mail: yann.blanchard@latmos.ipsl.fr
Save
  • Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086, doi:10.1175/2007JTECHA1053.1.

    • Search Google Scholar
    • Export Citation
  • Beesley, J. A., 2000: Estimating the effect of clouds on the Arctic surface energy budget. J. Geophys. Res., 105, 10 10310 117, doi:10.1029/2000JD900043.

    • Search Google Scholar
    • Export Citation
  • Beesley, J. A., and R. E. Moritz, 1999: Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J. Climate, 12, 395415, doi:10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourdages, L., T. J. Duck, G. Lesins, J. R. Drummond, and E. W. Eloranta, 2009: Physical properties of high Arctic tropospheric particles during winter. Atmos. Chem. Phys., 9, 68816897, doi:10.5194/acp-9-6881-2009.

    • Search Google Scholar
    • Export Citation
  • Chan, M. A., and J. C. Comiso, 2011: Cloud features detected by MODIS but not by CloudSat and CALIOP. Geophys. Res. Lett., 38, L24813, doi:10.1029/2011GL050063.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2012: Large decadal decline of the Arctic multiyear ice cover. J. Climate, 25, 11761193, doi:10.1175/JCLI-D-11-00113.1.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, W. B. Rossow, and D. Randall, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764, doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSatCALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Di Pierro, M., L. Jaeglé, E. W. Eloranta, and S. Sharma, 2013: Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006–2012). Atmos. Chem. Phys., 13, 70757095, doi:10.5194/acp-13-7075-2013.

    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, K. Crosby, C. N. Long, R. S. Stone, and M. D. Shupe, 2010: A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res., 115, D17212, doi:10.1029/2009JD013489.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and A. C. A. P. van Lammeren, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations 1. Theory and examples. J. Geophys. Res., 106, 27 42527 448, doi:10.1029/2001JD900243.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2010a: Interannual variations of Arctic cloud types in relation to sea ice. J. Climate, 23, 42164232, doi:10.1175/2010JCLI3492.1.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2010b: Arctic cloud changes from surface and satellite observations. J. Climate, 23, 42334242, doi:10.1175/2010JCLI3544.1.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 2005: High spectral resolution lidar. LIDAR: Range-Resolved Optical Remote Sensing of the Atmosphere, K. Weitkamp, Ed., Springer Series in Optical Sciences, Vol. 102, Springer, 143–163.

  • Eloranta, E. W., T. Uttal, and M. Shupe, 2007: Cloud particle size measurements in Arctic clouds using lidar and radar data. Proc. Int. Geosci. Remote Sens. Symp. IGARSS 2007, Barcelona, Spain, IEEE International, 22652267. [Available online at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4423292.]

  • Garnier, A., J. Pelon, P. Dubuisson, M. Faivre, O. Chomette, N. Pascal, and D. P. Kratz, 2012: Retrieval of cloud properties using CALIPSO imaging infrared radiometer. Part I: Effective emissivity and optical depth. J. Appl. Meteor. Climatol., 51, 14071425, doi:10.1175/JAMC-D-11-0220.1.

    • Search Google Scholar
    • Export Citation
  • Grenier, P., J.-P. Blanchet, and R. Muñoz Alpizar, 2009: Study of polar thin ice clouds and aerosols seen by CloudSat and CALIPSO during midwinter 2007. J. Geophys. Res., 114, D09201, doi:10.1029/2008JD010927.

    • Search Google Scholar
    • Export Citation
  • Hahn, C., S. Warren, and J. London, 1995: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Climate, 8, 14291446, doi:10.1175/1520-0442(1995)008<1429:TEOMOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J., and M. Shupe, 2004: Characteristics and radiative effects of diamond dust over the western Arctic Ocean region. J. Climate, 17, 29532960, doi:10.1175/1520-0442(2004)017<2953:CAREOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., A. Eldering, A. J. Braverman, E. J. Fetzer, J. H. Jiang, E. Fishbein, and D. L. Wu, 2007: Toward the characterization of upper tropospheric clouds using Atmospheric Infrared Sounder and Microwave Limb Sounder observations. J. Geophys. Res., 112, D05202, doi:10.1029/2006JD007336.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and T. L’Ecuyer, 2013: Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. J. Geophys. Res. Atmos., 118, 72197236, doi:10.1002/jgrd.50489.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett.,35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Kim, S.-W., S. Berthier, J.-C. Raut, P. Chazette, F. Dulac, and S.-C. Yoon, 2008: Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos. Chem. Phys., 8, 37053720, doi:10.5194/acp-8-3705-2008.

    • Search Google Scholar
    • Export Citation
  • Kim, S.-W., E.-S. Chung, S.-C. Yoon, B.-J. Sohn, and N. Sugimoto, 2011: Intercomparisons of cloud-top and cloud-base heights from ground-based lidar, CloudSat and CALIPSO measurements. Int. J. Remote Sens., 32, 11791197, doi:10.1080/01431160903527439.

    • Search Google Scholar
    • Export Citation
  • Kovacs, T., and P. McCormick, 2005: Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) quid pro quo validation plan. [Available online at http://calipsovalidation.hamptonu.edu/QPQ_plan062206.htm.]

  • Lesins, G., L. Bourdages, T. J. Duck, J. R. Drummond, E. W. Eloranta, and V. P. Walden, 2009: Large surface radiative forcing from topographic blowing snow residuals measured in the high Arctic at Eureka. Atmos. Chem. Phys., 9, 18471862, doi:10.5194/acp-9-1847-2009.

    • Search Google Scholar
    • Export Citation
  • Lesins, G., T. J. Duck, and J. R. Drummond, 2010: Climate trends at Eureka in the Canadian high Arctic. Atmos.–Ocean, 48, 5980, doi:10.3137/AO1103.2010.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1987: A 94-GHz Doppler radar for cloud observations. J. Atmos. Oceanic Technol., 4, 3648, doi:10.1175/1520-0426(1987)004<0036:AGDRFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. R. Key, R. A. Frey, S. A. Ackerman, and W. Menzel, 2004: Nighttime polar cloud detection with MODIS. Remote Sens. Environ., 92, 181194, doi:10.1016/j.rse.2004.06.004.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., S. A. Ackerman, B. C. Maddux, J. R. Key, and R. A. Frey, 2010: Errors in cloud detection over the Arctic using a satellite imager and implications for observing feedback mechanisms. J. Climate, 23, 18941907, doi:10.1175/2009JCLI3386.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. R. Key, S. A. Ackerman, G. G. Mace, and Q. Zhang, 2012a: Arctic cloud macrophysical characteristics from CloudSat and CALIPSO. Remote Sens. Environ., 124, 159173, doi:10.1016/j.rse.2012.05.006.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. R. Key, Z. Liu, X. Wang, and S. J. Vavrus, 2012b: A cloudier Arctic expected with diminishing sea ice. Geophys. Res. Lett., 39, L05705, doi:10.1029/2012GL051251.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., R. Marchand, and T. Ackerman, 2010: A comparison of observations in the tropical western Pacific from ground-based and satellite millimeter-wavelength cloud radars. J. Geophys. Res., 115, D24206, doi:10.1029/2009JD013575.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., and E. Morrow, 1998: Evaluation of an AVHRR cloud detection and classification method over the central Arctic Ocean. J. Appl. Meteor., 37, 166183, doi:10.1175/1520-0450(1998)037<0166:EOAACD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • McBean, G., and Coauthors, 2005: Arctic climate: Past and present. Arctic Climate Impact Assessment Scientific Rep., Cambridge University Press, 21–60. [Available online at http://www.acia.uaf.edu/PDFs/ACIA_Science_Chapters_Final/ACIA_Ch02_Final.pdf.]

  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455, doi:10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Protat, A., A. Armstrong, M. Haeffelin, Y. Morille, J. Pelon, J. Delanoë, and D. Bouniol, 2006: Impact of conditional sampling and instrumental limitations on the statistics of cloud properties derived from cloud radar and lidar at SIRTA. Geophys. Res. Lett., 33, L11805, doi:10.1029/2005GL025340.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2009: Assessment of CloudSat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26, 17171741, doi:10.1175/2009JTECHA1246.1.

    • Search Google Scholar
    • Export Citation
  • Rigor, I., R. Colony, and S. Martin, 2000: Variations in surface air temperature observations in the Arctic, 1979–97. J. Climate, 13, 896914, doi:10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rinke, A., C. Melsheimer, K. Dethloff, and G. Heygster, 2009: Arctic total water vapor: Comparison of regional climate simulations with observations, and simulated decadal trends. J. Hydrometeor., 10, 113129, doi:10.1175/2008JHM970.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., 2004: Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations. Geophys. Res. Lett., 31, L12207, doi:10.1029/2004GL020067.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., R. W. Lindsay, S. Vavrus, and J. A. Francis, 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 21, 47994810, doi:10.1175/2008JCLI2156.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and I. Simmonds, 2012: Local and remote controls on observed Arctic warming. Geophys. Res. Lett., 39, L10709, doi:10.1029/2012GL051598.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., M. D. Shupe, and M. Tjernström, 2012: On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J. Climate, 25, 23742393, doi:10.1175/JCLI-D-11-00186.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2005: The Arctic Climate System. Cambridge University Press, 385 pp.

  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. D. Kahl, and R. C. Schnell, 1992: Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate, 5, 615629, doi:10.1175/1520-0442(1992)005<0615:LLTIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and J. Stroeve, 2012: Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res., 117, D10104, doi:10.1029/2011JD017421.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, doi:10.1029/2007GL031008.

  • Shupe, M. D., 2011: Clouds at Arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. J. Appl. Meteor. Climatol., 50, 645661, doi:10.1175/2010JAMC2468.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, doi:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., V. P. Walden, E. Eloranta, T. Uttal, J. R. Campbell, S. M. Starkweather, and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644, doi:10.1175/2010JAMC2467.1.

    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., J. Delanoë, and R. J. Hogan, 2011: A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat,CALIPSO, and MODIS. J. Appl. Meteor. Climatol., 50, 19521969, doi:10.1175/2011JAMC2646.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, doi:10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, doi:10.1109/TGRS.2007.903703.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 20342050, doi:10.1175/2009JTECHA1228.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part II: Recent trends. J. Climate, 18, 25752593, doi:10.1175/JCLI3439.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., J. Key, Y. Liu, C. Fowler, J. Maslanik, and M. Tschudi, 2012: Arctic climate variability and trends from satellite observations. Adv. Meteor., 2012, 505613, doi:10.1155/2012/505613.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. R. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4893), 111, doi:10.1117/12.466539.

  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 389 108 10
PDF Downloads 253 61 5