Daily Cycle of Precipitation over the Northern Coast of Brazil

Sheila Santana de Barros Brito Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, São José dos Campos, Brazil

Search for other papers by Sheila Santana de Barros Brito in
Current site
Google Scholar
PubMed
Close
and
Marcos Daisuke Oyama Departamento de Ciência e Tecnologia Aeroespacial, Instituto de Aeronáutica e Espaço, Divisão de Ciências Atmosféricas, São José dos Campos, Brazil

Search for other papers by Marcos Daisuke Oyama in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The daily cycle of precipitation (DCP) in the austral autumn on the northern coast of Brazil (NCB) is examined in detail. The Tropical Rainfall Measuring Mission 3B42 dataset was used to obtain the DCP, and the intradaily variability was measured using the coefficient of variation (CV). The DCP data of the NCB were grouped into five regimes. A new regime was found, called the shore regime. It has a minimum CV, and its cycle shows both continental (late afternoon peak) and oceanic features (morning peak). The landside coastal regime was divided into two areas: a continental coast regime, with very high CV, and an inland coast regime, with clear inland phase propagation. The continental regime was divided into two categories: an inland regime with low and high variability. The Forecast and Tracking of the Evolution of Cloud Clusters (ForTraCC) data were used to relate convective systems (CS) and their processes to the DCP. The following processes are studied for the CS: initiation/dissipation, merge/split, area increase/reduction, and advection. Initiation is more concentrated in time, while dissipation is more distributed. Physical mechanisms that generate initiation can promote area expansion and hence CS merge. By considering a simple parameterization, the time scale of the CS area reduction under environmental conditions that are unfavorable to initiation ranges from 6 to 12 h. Therefore, there is upscaling of the CS in the afternoon and slow decay during the night and morning, which leads to a more uniform cycle inland.

Corresponding author address: Sheila Santana de Barros Brito, Avenida dos Astronautas, 1758, Bairro Jardim da Granja, 12.227-010, São José dos Campos, SP, Brazil. E-mail: sheilasbarros@gmail.com

Abstract

The daily cycle of precipitation (DCP) in the austral autumn on the northern coast of Brazil (NCB) is examined in detail. The Tropical Rainfall Measuring Mission 3B42 dataset was used to obtain the DCP, and the intradaily variability was measured using the coefficient of variation (CV). The DCP data of the NCB were grouped into five regimes. A new regime was found, called the shore regime. It has a minimum CV, and its cycle shows both continental (late afternoon peak) and oceanic features (morning peak). The landside coastal regime was divided into two areas: a continental coast regime, with very high CV, and an inland coast regime, with clear inland phase propagation. The continental regime was divided into two categories: an inland regime with low and high variability. The Forecast and Tracking of the Evolution of Cloud Clusters (ForTraCC) data were used to relate convective systems (CS) and their processes to the DCP. The following processes are studied for the CS: initiation/dissipation, merge/split, area increase/reduction, and advection. Initiation is more concentrated in time, while dissipation is more distributed. Physical mechanisms that generate initiation can promote area expansion and hence CS merge. By considering a simple parameterization, the time scale of the CS area reduction under environmental conditions that are unfavorable to initiation ranges from 6 to 12 h. Therefore, there is upscaling of the CS in the afternoon and slow decay during the night and morning, which leads to a more uniform cycle inland.

Corresponding author address: Sheila Santana de Barros Brito, Avenida dos Astronautas, 1758, Bairro Jardim da Granja, 12.227-010, São José dos Campos, SP, Brazil. E-mail: sheilasbarros@gmail.com
Save
  • Alcântara, C. R., M. A. F. Silva Dias, E. P. Souza, and J. C. P. Cohen, 2011: Verification of the role of the low level jets in Amazon squall lines. Atmos. Res., 100, 36–44, doi:10.1016/j.atmosres.2010.12.023.

    • Search Google Scholar
    • Export Citation
  • Barbosa, R. L., M. D. Oyama, and L. A. T. Machado, 2006: Climatologia das perturbações convectivas iniciadas na costa norte do Brasil (Climatology of convective perturbations initiated on the north coast of Brazil). Rev. Bras. Meteor., 21 (1), 107–117.

    • Search Google Scholar
    • Export Citation
  • Barros, S. S., 2008: Precipitação no Centro de Lançamento de Alcântara: Aspectos observacionais e de modelagem (Precipitation in the Alcântara Launch Center: Observational and modeling aspects). M.Sc. thesis, Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, 112 pp.

  • Bowman, K. P., J. C. Collier, G. R. North, Q. Wu, E. Ha, and J. Hardin, 2005: Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J. Geophys. Res., 110, D21104, doi:10.1029/2005JD005763.

    • Search Google Scholar
    • Export Citation
  • Brito, S. S. B., 2013: Ciclo diário de precipitação no norte do Brasil (Daily cycle of precipitation in northern Brazil). Ph.D. thesis, Instituto Nacional de Pesquisas Espaciais, 152 pp.

  • Cohen, J. C. P., M. A. F. Silva Dias, and C. A. Nobre, 1995: Aspectos climatológicos das linhas de instabilidade na Amazônia (Climatological aspects of squall lines in Amazonia). Climanálise, 4 (11), 34–40.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 880 pp.

  • Cutrim, E. M. C., D. W. Martin, D. G. Butzow, I. M. Silva, and E. Yulaeva, 2000: Pilot analysis of hourly rainfall in central and eastern Amazonia. J. Climate, 13, 1326–1334, doi:10.1175/1520-0442(2000)013<1326:PAOHRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev., 125, 3157–3171, doi:10.1175/1520-0493(1997)125<3157:TDMOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gonçalves, W. A., 2013: Uma avaliação do efeito dos aerossóis na organização e estrutura das nuvens convectivas (An evaluation of the effect of aerosols in organization and structure of convective clouds). Ph.D. thesis, Instituto Nacional de Pesquisas Espaciais, 155 pp.

  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 1171–1188, doi:10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., V. E. Kousky, and R. J. Joyce, 2005: Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses. J. Geophys. Res., 110, D23105, doi:10.1029/2005JD006156.

    • Search Google Scholar
    • Export Citation
  • Jeong, J., A. Walther, G. Nikulin, D. Chen, and C. Jones, 2011: Diurnal cycle of precipitation amount and frequency in Sweden: Observation versus model simulation. Tellus, 63A, 664–674, doi:10.1111/j.1600-0870.2011.00517.x.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 2680–2696, doi:10.1175/2007JCLI2051.1.

    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., 1980: Diurnal rainfall variation in Northeast Brazil. Mon. Wea. Rev., 108, 488–498, doi:10.1175/1520-0493(1980)108<0488:DRVINB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laurent, H., L. A. T. Machado, C. Morales, and L. Durieux, 2002: Characteristics of Amazonian mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment. J. Geophys. Res., 107, 8054, doi:10.1029/2001JD000337.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and W. B. Rossow, 1993: Structural characteristics and radiative properties of tropical cloud clusters. Mon. Wea. Rev., 121, 3234–3260, doi:10.1175/1520-0493(1993)121<3234:SCARPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 1630–1654, doi:10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mao, J. Y., and G. X. Wu, 2012: Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data. Sci. China Earth Sci., 55, 554–566, doi:10.1007/s11430-011-4315-x.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 1456–1475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., 2004: Nocturnal cloud systems and the diurnal variation of clouds and rainfall in southwestern Amazonia. Mon. Wea. Rev., 132, 1201–1219, doi:10.1175/1520-0493(2004)132<1201:NCSATD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149–166, doi:10.1175/2008JHM1052.1.

    • Search Google Scholar
    • Export Citation
  • Silva, C. M. S., 2013: Ciclo diário e semidiário de precipitação na costa norte do Brasil (Daily and semidaily cycles of precipitation in the northern coast of Brazil). Rev. Bras. Meteor., 28 (1), 34–42, doi:10.1590/S0102-77862013000100004.

    • Search Google Scholar
    • Export Citation
  • Spiegel, M. R., 1978: Probabilidade e estatística(Probability and Statistics). McGraw-Hill Brasil, 518 pp.

  • Teixeira, R. F. B., 2008: O fenômeno da brisa e sua relação com a chuva sobre Fortaleza-CE (The breeze phenomenon and its relationship with rain on Fortaleza-CE). Rev. Bras. Meteor., 23 (3), 282–291, doi:10.1590/S0102-77862008000300003.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., P. Arkin, M. R. P. Sapiano, and E. E. Ebert, 2008: Evaluating high-resolution precipitation products. Bull. Amer. Meteor. Soc., 89, 1911–1916, doi:10.1175/2008BAMS2652.1.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 9591–9613, doi:10.1029/JD092iD08p09591.

    • Search Google Scholar
    • Export Citation
  • Vila, D. A., L. A. T. Machado, H. Laurent, and I. Velasco, 2008: Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Wea. Forecasting, 23, 233–245, doi:10.1175/2007WAF2006121.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Academic Press, 488 pp.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784–801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 5190–5226, doi:10.1175/JCLI3883.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Chen, A. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 3997–4010, doi:10.1175/2008JCLI2028.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 93 4
PDF Downloads 172 21 1