Skill of Direct Solar Radiation Predicted by the ECMWF Global Atmospheric Model over Australia

Alberto Troccoli CSIRO Oceans and Atmosphere Flagship, Canberra, Australian Capital Territory, Australia

Search for other papers by Alberto Troccoli in
Current site
Google Scholar
PubMed
Close
and
Jean-Jacques Morcrette European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Jean-Jacques Morcrette in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Prediction of direct solar radiation is key in sectors such as solar power and agriculture; for instance, it can enable more efficient production of energy from concentrating solar power plants. An assessment of the quality of the direct solar radiation forecast by two versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) global numerical weather prediction model up to 5 days ahead is carried out here. The performance of the model is measured against observations from four solar monitoring stations over Australia, characterized by diverse geographic and climatic features, for the year 2006. As a reference, the performance of global radiation forecast is carried out as well. In terms of direct solar radiation, while the skill of the two model versions is very similar, and with relative mean absolute errors (rMAEs) ranging from 18% to 45% and correlations between 0.85 and 0.25 at around midday, their performance is substantially enhanced via a simple postprocessing bias-correction procedure. There is a marked dependency on cloudy conditions, with rMAEs 2–4 times as large for very cloudy-to-overcast conditions relative to clear-sky conditions. There is also a distinct dependency on the background climatic clear-sky conditions of the location considered. Tests made on a simulated operational setup targeting three quantiles show that direct radiation forecasts achieve potentially high scores. Overall, these analyses provide an indication of the potential practical use of direct irradiance forecast for applications such as solar power operations.

Corresponding author address: Dr. Alberto Troccoli, CSIRO Oceans and Atmosphere Flagship, GPO Box 3023, Canberra ACT 2601, Australia. E-mail: alberto.troccoli@csiro.au

Abstract

Prediction of direct solar radiation is key in sectors such as solar power and agriculture; for instance, it can enable more efficient production of energy from concentrating solar power plants. An assessment of the quality of the direct solar radiation forecast by two versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) global numerical weather prediction model up to 5 days ahead is carried out here. The performance of the model is measured against observations from four solar monitoring stations over Australia, characterized by diverse geographic and climatic features, for the year 2006. As a reference, the performance of global radiation forecast is carried out as well. In terms of direct solar radiation, while the skill of the two model versions is very similar, and with relative mean absolute errors (rMAEs) ranging from 18% to 45% and correlations between 0.85 and 0.25 at around midday, their performance is substantially enhanced via a simple postprocessing bias-correction procedure. There is a marked dependency on cloudy conditions, with rMAEs 2–4 times as large for very cloudy-to-overcast conditions relative to clear-sky conditions. There is also a distinct dependency on the background climatic clear-sky conditions of the location considered. Tests made on a simulated operational setup targeting three quantiles show that direct radiation forecasts achieve potentially high scores. Overall, these analyses provide an indication of the potential practical use of direct irradiance forecast for applications such as solar power operations.

Corresponding author address: Dr. Alberto Troccoli, CSIRO Oceans and Atmosphere Flagship, GPO Box 3023, Canberra ACT 2601, Australia. E-mail: alberto.troccoli@csiro.au
Save
  • Becker, P., and D. S. Weingarten, 1991: A comparison of several models for separating direct and diffuse components of solar irradiation. Agric. For. Meteor., 53, 347353, doi:10.1016/0168-1923(91)90052-R.

    • Search Google Scholar
    • Export Citation
  • Boland, J., B. H. Ridley, and B. M. Brown, 2008: Models of diffuse solar radiation. Renewable Energy, 33, 575584, doi:10.1016/j.renene.2007.04.012.

    • Search Google Scholar
    • Export Citation
  • Bristow, K. L., G. S. Campbell, and K. E. Saxton, 1985: An equation for separating daily solar irradiation into direct and diffuse components. Agric. For. Meteor., 35, 123131, doi:10.1016/0168-1923(85)90079-6.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Forbes, R., A. M. Tompkins, and A. Untch, 2011: A new prognostic bulk microphysics scheme for the IFS. ECMWF Tech. Memo. 649, 30 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/601-700/tm649.pdf.]

  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 20582082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 22232237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregory, P. A., L. J. Rikus, and J. D. Kepert, 2012: Testing and diagnosing the ability of the Bureau of Meteorology’s numerical weather prediction systems to support prediction of solar energy production. J. Appl. Meteor. Climatol., 51, 15771601, doi:10.1175/JAMC-D-10-05027.1.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 2000: The representation of cloud cover in atmospheric general circulation models. Ph.D. thesis, University of Munich, 193 pp. [Available from ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom.]

  • Jakob, C., and S. A. Klein, 2000: A parametrization of the effects of cloud and precipitation overlap for use in general circulation models. Quart. J. Roy. Meteor. Soc., 126, 2525, doi:10.1002/qj.49712656809.

    • Search Google Scholar
    • Export Citation
  • Kraas, B., M. Schroedter-Homscheidt, and R. Madlener, 2013: Economic merits of a state-of-the-art concentrating solar power forecasting system for participation in the Spanish electricity market. Sol. Energy, 93, 244255, doi:10.1016/j.solener.2013.04.012.

    • Search Google Scholar
    • Export Citation
  • Lara-Fanego, V., J. A. Ruiz-Arias, D. Pozo-Vazquez, F. J. Santos-Alamillos, and J. Tovar-Pescador, 2012: Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain). Sol. Energy, 86, 22002217, doi:10.1016/j.solener.2011.02.014.

    • Search Google Scholar
    • Export Citation
  • Lindner, T. H., and J. Li, 2000: Parameterization of the optical properties for water clouds in the infrared. J. Climate, 13, 17971805, doi:10.1175/1520-0442(2000)013<1797:POTOPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, B. Y. H., and R. C. Jordan, 1960: The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy, 4, 119, doi:10.1016/0038-092X(60)90062-1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E., J. Hurka, D. Heinemann, and H. G. Beyer, 2009: Irradiance forecasting for the power prediction of grid-connected photovoltaic systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2, 210, doi:10.1109/JSTARS.2009.2020300.

    • Search Google Scholar
    • Export Citation
  • Lovegrove, K., and W. Stein, Eds., 2012: Concentrating Solar Power Technology: Principles, Developments and Applications. Woodhead Publishing Series in Energy 21, Elsevier, 708 pp.

  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus. J. Atmos. Sci., 51, 18231842, doi:10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mathiesen, P., and J. Kleissl, 2011: Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Sol. Energy, 85, 967977, doi:10.1016/j.solener.2011.02.013.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E., and S. Clough, 1997: Shortwave and longwave enhancements in the Rapid Radiative Transfer Model. Proc. Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, TX, U.S. Department of Energy, 409–413. [Available online at https://www.arm.gov/publications/proceedings/conf07/extended_abs/mlawer_ej.pdf].

  • Morcrette, J.-J., and Coauthors, 2007: Recent advances in radiation transfer parameterizations. ECMWF Tech. Memo. 539, 52 pp.

  • Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 136, 47734798, doi:10.1175/2008MWR2363.1.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 21152136, doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perez, R., S. Kivalov, J. Schlemmer, K. Hemker Jr., D. Renné, and T. E. Hoff, 2010: Validation of short and medium term operational solar radiation forecasts in the US. Sol. Energy, 84, 21612172, doi:10.1016/j.solener.2010.08.014.

    • Search Google Scholar
    • Export Citation
  • Perez, R., and Coauthors, 2013: Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Sol. Energy, 94, 305326, doi:10.1016/j.solener.2013.05.005.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., 1999: Estimating the diffuse component from daily and monthly measurements of global radiation. Agric. For. Meteor., 95, 169185, doi:10.1016/S0168-1923(99)00028-3.

    • Search Google Scholar
    • Export Citation
  • Schroedter-Homscheidt, M., N. Killius, G. Gesell, and A. Benedetti, 2014: Assessment report for global and direct normal irradiance forecasts. MACC Project Rep., 41 pp. [Available online at https://www.gmes-atmosphere.eu/documents/maccii/deliverables/rad/MACCII_RAD_DEL_D123.1_20131205_DLR.pdf.]

  • Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 14191427, doi:10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spitters, C. J. T., H. A. J. M. Toussaint, and J. Goudriaan, 1986: Separating the diffuse and direct component of global radiation and its implication for modelling canopy photosynthesis Part I. Components of incoming radiation. Agric. For. Meteor., 38, 217229, doi:10.1016/0168-1923(86)90060-2.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., 2001: Reply to comments by G.M. McFarquhar on “Parametrization of effective sizes of cirrus-cloud particles and its verification against observations.” Quart. J. Roy. Meteor. Soc., 127A, 267271.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., P. Hoorig, M. Chin, I. Fung, D. Jacob, and J. Penner, 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23 89523 915, doi:10.1029/97JD01864.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, doi:10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., C. Cardinali, J.-J. Morcrette, and M. Rodwell, 2005: Influence of aerosol climatology on forecasts of the African Easterly Jet. Geophys. Res. Lett., 32, L10801, doi:10.1029/2004GL022189.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., K. Gierens, and G. Rädel, 2007: Ice supersaturation in the ECMWF Integrated Forecast System. Quart. J. Roy. Meteor. Soc., 133, 5363, doi:10.1002/qj.14.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., and J.-J. Morcrette, 2012: Forecast assessment of surface solar radiation over Australia. Proc. World Renewable Energy Conf., Denver, CO, American Solar Energy Society, 1110–1117. [Available online at http://ases.conference-services.net/resources/252/2859/pdf/SOLAR2012_0280_full%20paper.pdf.]

  • Troccoli, A., and J.-J. Morcrette, 2013: An assessment of solar irradiance components produced by the IFS. ECMWF Newsletter, No. 137, ECMWF, Reading, United Kingdom, 6–7. [Available online at http://old.ecmwf.int/publications/newsletters/pdf/137.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 375 99 5
PDF Downloads 286 66 1