Precipitation Estimates from MSG SEVIRI Daytime, Nighttime, and Twilight Data with Random Forests

Meike Kühnlein Environmental Informatics, Faculty of Geography, Philipps-University Marburg, Marburg, Germany

Search for other papers by Meike Kühnlein in
Current site
Google Scholar
PubMed
Close
,
Tim Appelhans Environmental Informatics, Faculty of Geography, Philipps-University Marburg, Marburg, Germany

Search for other papers by Tim Appelhans in
Current site
Google Scholar
PubMed
Close
,
Boris Thies Laboratory for Climatology and Remote Sensing, Faculty of Geography, Philipps-University Marburg, Marburg, Germany

Search for other papers by Boris Thies in
Current site
Google Scholar
PubMed
Close
, and
Thomas Nauß Environmental Informatics, Faculty of Geography, Philipps-University Marburg, Marburg, Germany

Search for other papers by Thomas Nauß in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new rainfall retrieval technique for determining rainfall rates in a continuous manner (day, twilight, and night) resulting in a 24-h estimation applicable to midlatitudes is presented. The approach is based on satellite-derived information on cloud-top height, cloud-top temperature, cloud phase, and cloud water path retrieved from Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data and uses the random forests (RF) machine-learning algorithm. The technique is realized in three steps: (i) precipitating cloud areas are identified, (ii) the areas are separated into convective and advective-stratiform precipitating areas, and (iii) rainfall rates are assigned separately to the convective and advective-stratiform precipitating areas. Validation studies were carried out for each individual step as well as for the overall procedure using collocated ground-based radar data. Regarding each individual step, the models for rain area and convective precipitation detection produce good results. Both retrieval steps show a general tendency toward elevated prediction skill during summer months and daytime. The RF models for rainfall-rate assignment exhibit similar performance patterns, yet it is noteworthy how well the model is able to predict rainfall rates during nighttime and twilight. The performance of the overall procedure shows a very promising potential to estimate rainfall rates at high temporal and spatial resolutions in an automated manner. The near-real-time continuous applicability of the technique with acceptable prediction performances at 3–8-hourly intervals is particularly remarkable. This provides a very promising basis for future investigations into precipitation estimation based on machine-learning approaches and MSG SEVIRI data.

Corresponding author address: Meike Kühnlein, Philipps-University Marburg, 35037 Marburg, Germany. E-mail: meike.kuehnlein@staff.uni-marburg.de

Abstract

A new rainfall retrieval technique for determining rainfall rates in a continuous manner (day, twilight, and night) resulting in a 24-h estimation applicable to midlatitudes is presented. The approach is based on satellite-derived information on cloud-top height, cloud-top temperature, cloud phase, and cloud water path retrieved from Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data and uses the random forests (RF) machine-learning algorithm. The technique is realized in three steps: (i) precipitating cloud areas are identified, (ii) the areas are separated into convective and advective-stratiform precipitating areas, and (iii) rainfall rates are assigned separately to the convective and advective-stratiform precipitating areas. Validation studies were carried out for each individual step as well as for the overall procedure using collocated ground-based radar data. Regarding each individual step, the models for rain area and convective precipitation detection produce good results. Both retrieval steps show a general tendency toward elevated prediction skill during summer months and daytime. The RF models for rainfall-rate assignment exhibit similar performance patterns, yet it is noteworthy how well the model is able to predict rainfall rates during nighttime and twilight. The performance of the overall procedure shows a very promising potential to estimate rainfall rates at high temporal and spatial resolutions in an automated manner. The near-real-time continuous applicability of the technique with acceptable prediction performances at 3–8-hourly intervals is particularly remarkable. This provides a very promising basis for future investigations into precipitation estimation based on machine-learning approaches and MSG SEVIRI data.

Corresponding author address: Meike Kühnlein, Philipps-University Marburg, 35037 Marburg, Germany. E-mail: meike.kuehnlein@staff.uni-marburg.de
Save
  • Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32 14132 157, doi:10.1029/1998JD200032.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and R. A. Mack, 1984: Thunderstorm cloud height–rainfall rate relations for use with satellite rainfall estimation techniques. J. Climate Appl. Meteor., 23, 280296, doi:10.1175/1520-0450(1984)023<0280:TCHRRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 3051, doi:10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aminou, D. M. A., 2002: MSG’s SEVIRI instrument. ESA Bulletin, No. 111, European Space Agency, Paris, France, 15–17. [Available online at http://www.esa.int/esapub/bulletin/bullet111/chapter4_bul111.pdf.]

  • Anagnostou, E. N., and C. Kummerow, 1997: Stratiform and convective classification of rainfall using SSM/I 85-GHz brightness temperature observations. J. Atmos. Oceanic Technol., 14, 570575, doi:10.1175/1520-0426(1997)014<0570:SACCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174, doi:10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and A. Gruber, 2001: GOES Multispectral Rainfall Algorithm (GMSRA). J. Appl. Meteor., 40, 15001514, doi:10.1175/1520-0450(2001)040<1500:GMRAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bartels, H., E. Weigl, T. Reich, P. Lang, A. Wagner, O. Kohler, N. Gerlach, and MeteoSolutions GmbH, 2004: Projekt RADOLAN—Routineverfahren zur Online-Aneichung der Radarniederschlagsdaten mit Hilfe von automatischen Bodenniederschlagsstationen (Ombrometer). DWD, Offenbach, Germany, 111 pp.

  • Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, P. Yang, and A. Steven, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 2. Cloud thermodynamic phase. J. Geophys. Res., 105, 11 78111 792, doi:10.1029/1999JD901090.

    • Search Google Scholar
    • Export Citation
  • Boulesteix, A.-L., S. Janitza, J. Kruppa, and I. R. König, 2012: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIREs Data Mining Knowl. Discov.,2, 493–507, doi:10.1002/widm.1072.

  • Breiman, L., 2001: Random forest. Mach. Learn., 45, 532, doi:10.1023/A:1010933404324.

  • Breiman, L., and A. Cutler, 2013: Random forests–Classification manual. [Available online at http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm.]

  • Capacci, D., and B. J. Conway, 2005: Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks. Meteor. Appl., 12, 291305, doi:10.1017/S1350482705001787.

    • Search Google Scholar
    • Export Citation
  • Cermak, J., 2006: SOFOS–A new satellite-based operational fog observation scheme. Ph.D. dissertation, Philipps-University Marburg, 147 pp. [Available online at http://archiv.ub.uni-marburg.de/diss/z2006/0149/pdf/djc.pdf.]

  • Cermak, J., and J. Bendix, 2008: A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res., 87, 279292, doi:10.1016/j.atmosres.2007.11.009.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., and R. Brown, 1995: Delineation of precipitation areas by correlation of Meteosat visible and infrared data with radar data. Mon. Wea. Rev., 123, 27432757, doi:10.1175/1520-0493(1995)123<2743:DOPABC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cutler, A., and J. R. Stevens, 2006: Random forests for microarrays. Methods in Enzymology, A. Kimmel and O. Brian, Eds., Academic Press, 422–432.

  • Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson, and J. J. Lawler, 2007: Random forests for classification in ecology. Ecology, 88, 27832792, doi:10.1890/07-0539.1.

    • Search Google Scholar
    • Export Citation
  • Dietterich, T. G., 2002: Ensemble learning. The Handbook of Brain Theory and Neural Networks, 2nd ed., M. A. Arbib, Ed., The MIT Press, 405–408.

  • Dupret, G., and M. Koda, 2001: Bootstrap re-sampling for unbalanced data in supervised learning. Eur. J. Oper. Res., 134, 141156, doi:10.1016/S0377-2217(00)00244-7.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2002: Verifying satellite precipitation estimates for weather and hydrological applications. Proc. First Int. Precipitation Working Group Workshop, Madrid, Spain, IPWG, 10 pp.

  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Feidas, H., and A. Giannakos, 2011: Identifying precipitating clouds in Greece using multispectral infrared Meteosat Second Generation satellite data. Theor. Appl. Climatol., 104, 2542, doi:10.1007/s00704-010-0316-5.

    • Search Google Scholar
    • Export Citation
  • Feidas, H., and A. Giannakos, 2012: Classifying convective and stratiform rain using multispectral infrared Meteosat Second Generation satellite data. Theor. Appl. Climatol., 108, 613630, doi:10.1007/s00704-011-0557-y.

    • Search Google Scholar
    • Export Citation
  • Früh, B., J. Bendix, T. Nauss, M. Paulat, A. Pfeiffer, J. W. Schipper, B. Thies, and H. Wernli, 2007: Verification of precipitation from regional climate simulations and remote-sensing observations with respect to ground-based observations in the upper Danube catchment. Meteor. Z., 16, 275293, doi:10.1127/0941-2948/2007/0210.

    • Search Google Scholar
    • Export Citation
  • Ghimire, B., J. Rogan, and J. Miller, 2010: Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett., 1, 4554, doi:10.1080/01431160903252327.

    • Search Google Scholar
    • Export Citation
  • Giannakos, A., and H. Feidas, 2013: Classification of convective and stratiform rain based on the spectral and textural features of Meteosat Second Generation infrared data. Theor. Appl. Climatol., 113, 495510, doi:10.1007/s00704-012-0802-z.

    • Search Google Scholar
    • Export Citation
  • Grimes, D., E. Coppola, M. Verdecchia, and G. Visconti, 2003: A neural network approach to real-time rainfall estimation for Africa using satellite data. J. Hydrometeor., 4, 11191133, doi:10.1175/1525-7541(2003)004<1119:ANNATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, L., N. Chehata, C. Mallet, and S. Boukir, 2011: Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J. Photogramm. Remote Sens., 66, 5666, doi:10.1016/j.isprsjprs.2010.08.007.

    • Search Google Scholar
    • Export Citation
  • Heinemann, G., C. Reudenbach, E. Heuel, J. Bendix, and M. Winiger, 2001: Investigation of summertime convective rainfall in Western Europe based on a synergy of remote sensing data and numerical models. Meteor. Atmos. Phys., 76, 2341, doi:10.1007/s007030170037.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Hsu, K., X. Gao, S. Soorshian, and H.-V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bi-spectral measurements in the 10-μm window region. J. Meteor. Soc. Japan, 63, 8899.

    • Search Google Scholar
    • Export Citation
  • Islam, T., M. A. Rico-Ramirez, and D. Han, 2012a: Tree-based genetic programming approach to infer microphysical parameters of the DSDs from the polarization diversity measurements. Comput. Geosci., 48, 2030, doi:10.1016/j.cageo.2012.05.028.

    • Search Google Scholar
    • Export Citation
  • Islam, T., M. A. Rico-Ramirez, D. Han, and P. K. Srivastava, 2012b: Artificial intelligence techniques for clutter identification with polarimetric radar signatures. Atmos. Res., 109–110, 95113, doi:10.1016/j.atmosres.2012.02.007.

    • Search Google Scholar
    • Export Citation
  • Islam, T., M. A. Rico-Ramirez, P. K. Srivastava, and Q. Dai, 2014a: Non-parametric rain/no rain screening method for satellite-borne passive microwave radiometers at 19–85 GHz channels with the random forests algorithm. Int. J. Remote Sens., 35, 32543267, doi:10.1080/01431161.2014.903444.

    • Search Google Scholar
    • Export Citation
  • Islam, T., P. K. Srivastava, M. A. Rico-Ramirez, Q. Dai, D. Han, and M. Gupta, 2014b: An exploratory investigation of an adaptive neuro fuzzy inference system (ANFIS) for estimating hydrometeors from TRMM/TMI in synergy with TRMM/PR. Atmos. Res., 145–146, 5768, doi:10.1016/j.atmosres.2014.03.019.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, doi:10.5194/hess-15-1109-2011.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., P. Bauer, J. Turk, G. J. Huffman, R. Joyce, K.-L. Hsu, and D. Braithwaite, 2012: Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeor., 13, 6783, doi:10.1175/JHM-D-11-042.1.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., and T. Nauss, 2005: Satellite based retrieval of ice cloud properties using a semi-analytical algorithm. J. Geophys. Res., 110, D19206, doi:10.1029/2004JD005744.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, M., B. Thies, T. Nauss, and J. Bendix, 2010: Rainfall rate assignment using MSG SEVIRI data—A promising approach to spaceborne rainfall rate retrieval for midlatitudes. J. Appl. Meteor. Climatol., 49, 14771495, doi:10.1175/2010JAMC2284.1.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, M., T. Appelhans, B. Thies, A. A. Kokhanovsky, and T. Nauss, 2013: An evaluation of a semi-analytical cloud property retrieval using MSG SEVIRI, MODIS and CloudSat. Atmos. Res., 122, 111135, doi:10.1016/j.atmosres.2012.10.029.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, M., T. Appelhans, B. Thies, and T. Nauss, 2014: Improving the accuracy of rainfall rates from optical satellite sensors with machine learning—A random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ., 141, 129143, doi:10.1016/j.rse.2013.10.026.

    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2003: A nighttime delineation algorithm for infrared satellite data based on microphysical considerations. J. Appl. Meteor., 42, 12181226, doi:10.1175/1520-0450(2003)042<1218:ANDAFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., 2003: Satellite rainfall estimates: New perspectives for meteorology and climate from the EURAINSAT project. Ann. Geophys., 46, 363372.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., F. Porcu, and F. Prodi, 1990: Operational rainfall estimation using Meteosat infrared imagery: An application in Italy’s Arno river basin. Its potential and drawbacks. ESA J., 14, 313323.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., J. Schmetz, H. J. Lutz, J. Kerkmann, P. P. Alberoni, and M. Cervino, 2001: Precipitation estimations from geostationary orbit and prospects for Meteosat Second Generation. Meteor. Appl., 8, 2342, doi:10.1017/S1350482701001037.

    • Search Google Scholar
    • Export Citation
  • Liaw, A., and M. Wiener, 2002: Classification and regression by randomForest. R News, 2, 1822.

  • Liu, Y., N. V. Chawla, M. P. Harper, E. Shriberg, and A. Stolcke, 2006: A study in machine learning from imbalanced data for sentence boundary detection in speech. Comput. Speech Lang., 20, 468494, doi:10.1016/j.csl.2005.06.002.

    • Search Google Scholar
    • Export Citation
  • Malley, J. D., K. G. Malley, and S. Pajevic, 2011: Statistical Learning for Biomedical Data. Cambridge University Press, 285 pp.

  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Mota, J. F., F. J. Perez-Garcia, M. L. Jimenez, J. J. Amate, and J. Penas, 2002: Phytogeographical relationships among high mountain areas in the Baetic Ranges (south Spain). Global Ecol. Biogeogr., 11, 497504, doi:10.1046/j.1466-822X.2002.00312.x.

    • Search Google Scholar
    • Export Citation
  • Nauss, T., and A. A. Kokhanovsky, 2006: Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data. Atmos. Chem. Phys., 6, 50315036, doi:10.5194/acp-6-5031-2006.

    • Search Google Scholar
    • Export Citation
  • Nauss, T., and A. A. Kokhanovsky, 2007: Assignment of rainfall confidence values using multispectral satellite data at mid-latitude: First results. Adv. Geosci., 10, 99102, doi:10.5194/adgeo-10-99-2007.

    • Search Google Scholar
    • Export Citation
  • Nauss, T., and A. A. Kokhanovsky, 2011: Retrieval of warm cloud optical properties using simple approximations. Remote Sens. Environ., 115, 13171325, doi:10.1016/j.rse.2011.01.010.

    • Search Google Scholar
    • Export Citation
  • Ou, S. C., K. N. Liou, W. M. Gooch, and Y. Takano, 1993: Remote sensing of cirrus cloud parameters using Advanced Very-High-Resolution Radiometer 3.7- and 10.9-μm channels. Appl. Opt., 32, 21712180, doi:10.1364/AO.32.002171.

    • Search Google Scholar
    • Export Citation
  • Pal, M., 2005: Random forest classifier for remote sensing classification. Int. J. Remote Sens., 26, 217222, doi:10.1080/01431160412331269698.

    • Search Google Scholar
    • Export Citation
  • Prasad, A. M., L. R. Iverson, and A. Liaw, 2006: Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9, 181199, doi:10.1007/s10021-005-0054-1.

    • Search Google Scholar
    • Export Citation
  • Rao, N. X., S. C. Ou, and K. N. Liou, 1995: Removal of the solar component in AVHRR 3.7-μm radiances for the retrieval of cirrus cloud parameters. J. Appl. Meteor., 34, 482499, doi:10.1175/1520-0450-34.2.482.

    • Search Google Scholar
    • Export Citation
  • Revolution Analytics, cited 2014a: foreach: Foreach looping construct for R. [Available online at http://cran.r-project.org/package=foreach.]

  • Revolution Analytics, cited 2014b: doSNOW: Foreach parallel adaptor for the snow package. [Available online at http://cran.r-project.org/package=doSNOW.]

  • Rivolta, G., F. S. Marzano, E. Coppola, and M. Verdecchia, 2006: Artificial neural-network technique for precipitation nowcasting from satellite imagery. Adv. Geosci., 7, 97103, doi:10.5194/adgeo-7-97-2006.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Galiano, V. F., B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sanchez, 2012: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens., 67, 93104, doi:10.1016/j.isprsjprs.2011.11.002.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., and I. Holleman, 2009: SEVIRI rainfall retrieval and validation using weather radar observations. J. Geophys. Res., 114, D21202, doi:10.1029/2009JD012102.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and G. Gutman, 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res., 34, 259283, doi:10.1016/0169-8095(94)90096-5.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, doi:10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Gazen, A., and N. Villa, 2007: Storms prediction: Logistic regression vs random forest for unbalanced data. Case Stud. Bus. Ind. Gov. Stat.,1, 91101.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with Meteosat. Adv. Space Res., 19, 433441, doi:10.1016/S0273-1177(97)00051-3.

    • Search Google Scholar
    • Export Citation
  • Stanski, H. R., L. J. Wilson, and W. R. Burrows, 1989: Survey of common verification methods in meteorology. WMO World Weather Watch Tech. Rep. 8, WMO/TD No. 358, 81 pp.

  • Stone, R. S., G. L. Stephens, C. M. R. Platt, and S. Banks, 1990: The remote sensing of thin cirrus cloud using satellites, lidar, and radiative transfer theory. J. Appl. Meteor., 29, 353366, doi:10.1175/1520-0450(1990)029<0353:TRSOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33, 212229, doi:10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strobl, C., J. Malley, and G. Tutz, 2009: An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychol. Methods, 14, 323348, doi:10.1037/a0016973.

    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008a: Discriminating raining from non-raining cloud areas at mid-latitudes using Meteosat Second Generation SEVIRI nighttime data. Meteor. Appl., 15, 219230, doi:10.1002/met.56.

    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008b: Discriminating raining from non-raining cloud areas at mid-latitudes using Meteosat Second Generation SEVIRI daytime data. Atmos. Chem. Phys., 8, 23412349.

    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008c: Precipitation process and rainfall intensity differentiation using Meteosat Second Generation SEVIRI data. J. Geophys. Res., 113, D23206, doi:10.1029/2008JD010464.

    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008d: First results on a process-oriented rain area classification technique using Meteosat Second Generation SEVIRI nighttime data. Adv. Geosci., 8, 19.

    • Search Google Scholar
    • Export Citation
  • Tjemkes, S. A., L. van de Berg, and J. Schmetz, 1997: Warm water vapour pixels over high clouds as observed by Meteosat. Beitr. Phys. Atmos., 70, 1521.

    • Search Google Scholar
    • Export Citation
  • Turk, J., and P. Bauer, 2006: The International Precipitation Working Group and its role in the improvement of quantitative precipitation measurements. Bull. Amer. Meteor. Soc., 87, 643647, doi:10.1175/BAMS-87-5-643.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 795 365 51
PDF Downloads 567 212 31