Intense and Extreme Wind Speeds Observed by Anemometer and Seismic Networks: An Eastern U.S. Case Study

S. C. Pryor Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by S. C. Pryor in
Current site
Google Scholar
PubMed
Close
,
R. Conrick Atmospheric Science Program, Department of Geological Sciences, Indiana University Bloomington, Bloomington, Indiana

Search for other papers by R. Conrick in
Current site
Google Scholar
PubMed
Close
,
C. Miller Atmospheric Science Program, Department of Geological Sciences, Indiana University Bloomington, Bloomington, Indiana

Search for other papers by C. Miller in
Current site
Google Scholar
PubMed
Close
,
J. Tytell University of California, San Diego, La Jolla, California

Search for other papers by J. Tytell in
Current site
Google Scholar
PubMed
Close
, and
R. J. Barthelmie Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York

Search for other papers by R. J. Barthelmie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The scale and intensity of extreme wind events have tremendous relevance to determining the impact on infrastructure and natural and managed ecosystems. Analyses presented herein show the following. 1) Wind speeds in excess of the station-specific 95th percentile are coherent over distances of up to 1000 km over the eastern United States, which implies that the drivers of high wind speeds are manifest at the synoptic scale. 2) Although cold fronts associated with extratropical cyclones are a major cause of high–wind speed events, maximum sustained and gust wind speeds are only weakly dependent on the near-surface horizontal temperature gradient across the front. 3) Gust factors (GF) over the eastern United States have a mean value of 1.57 and conform to a lognormal probability distribution, and the relationship between maximum observed GF and sustained wind speed conforms to a power law with coefficients of 5.91 and −0.499. Even though there is coherence in the occurrence of intense wind speeds at the synoptic scale, the intensity and spatial extent of extreme wind events are not fully characterized even by the dense meteorological networks deployed by the National Weather Service. Seismic data from the USArray, a program within the Earthscope initiative, may be suitable for use in mapping high-wind and gust events, however. It is shown that the seismic channels exhibit well-defined spectral signatures under conditions of high wind, with a variance peak at frequencies of ~0.04 s−1 and an amplitude that appears to scale with the magnitude of observed wind gusts.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0091.s1.

Corresponding author address: S. C. Pryor, Dept. of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853. E-mail: sp2279@cornell.edu

Abstract

The scale and intensity of extreme wind events have tremendous relevance to determining the impact on infrastructure and natural and managed ecosystems. Analyses presented herein show the following. 1) Wind speeds in excess of the station-specific 95th percentile are coherent over distances of up to 1000 km over the eastern United States, which implies that the drivers of high wind speeds are manifest at the synoptic scale. 2) Although cold fronts associated with extratropical cyclones are a major cause of high–wind speed events, maximum sustained and gust wind speeds are only weakly dependent on the near-surface horizontal temperature gradient across the front. 3) Gust factors (GF) over the eastern United States have a mean value of 1.57 and conform to a lognormal probability distribution, and the relationship between maximum observed GF and sustained wind speed conforms to a power law with coefficients of 5.91 and −0.499. Even though there is coherence in the occurrence of intense wind speeds at the synoptic scale, the intensity and spatial extent of extreme wind events are not fully characterized even by the dense meteorological networks deployed by the National Weather Service. Seismic data from the USArray, a program within the Earthscope initiative, may be suitable for use in mapping high-wind and gust events, however. It is shown that the seismic channels exhibit well-defined spectral signatures under conditions of high wind, with a variance peak at frequencies of ~0.04 s−1 and an amplitude that appears to scale with the magnitude of observed wind gusts.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0091.s1.

Corresponding author address: S. C. Pryor, Dept. of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853. E-mail: sp2279@cornell.edu
Save
  • Agustsson, H., and H. Olafsson, 2004: Mean gust factors in complex terrain. Meteor. Z., 13, 149155, doi:10.1127/0941-2948/2004/0013-0149.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L., and Coauthors, 1976: The Viking Seismic Experiment. Science, 194, 13181321, doi:10.1126/science.194.4271.1318.

  • Azorin-Molina, C., and Coauthors, 2014: Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J. Climate, 27, 36923712, doi:10.1175/JCLI-D-13-00652.1.

    • Search Google Scholar
    • Export Citation
  • Baigorria, G. A., J. W. Jones, and J. J. O’Brien, 2007: Understanding rainfall spatial variability in southeast USA at different timescales. Int. J. Climatol., 27, 749760, doi:10.1002/joc.1435.

    • Search Google Scholar
    • Export Citation
  • Bernhardt, J. E., and A. T. DeGaetano, 2012: Meteorological factors affecting the speed of movement and related impacts of extratropical cyclones along the U.S. east coast. Nat. Hazards, 61, 14631472, doi:10.1007/s11069-011-0078-0.

    • Search Google Scholar
    • Export Citation
  • Blennow, K., M. Andersson, J. Bergh, O. Sallnas, and E. Olofsson, 2010: Potential climate change impacts on the probability of wind damage in a south Swedish forest. Climatic Change, 99, 261278, doi:10.1007/s10584-009-9698-8.

    • Search Google Scholar
    • Export Citation
  • Brasseur, O., 2001: Development and application of a physical approach to estimating wind gusts. Mon. Wea. Rev., 129, 525, doi:10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bullock, J. M., S. M. White, C. Prudhomme, C. Tansey, R. Perea, and D. A. P. Hooftman, 2012: Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. J. Ecol., 100, 104115, doi:10.1111/j.1365-2745.2011.01910.x.

    • Search Google Scholar
    • Export Citation
  • Canada Transportation Development Centre, 1991: Wind and Wave Climate Atlas. MacLaren Plansearch Limited. [Available online at http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/atlas-eng.htm.]

  • Chandler, A. M., E. J. W. Jones, and M. H. Patel, 2001: Property loss estimation for wind and earthquake perils. Risk Anal., 21, 235249, doi:10.1111/0272-4332.212108.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1980: Climatology of high damaging wind in Illinois. Illinois State Water Survey Rep. of Investigation 95, 44 pp. [Available online at http://webh2o.sws.uiuc.edu/pubdoc/RI/ISWSRI-95.pdf.]

  • Changnon, S. A., Jr., 2009: Temporal and spatial distributions of wind storm damages in the United States. Climatic Change, 94, 473482, doi:10.1007/s10584-008-9518-6.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 2011: Windstorms in the United States. Nat. Hazards, 59, 11751187, doi:10.1007/s11069-011-9828-2.

  • Cheng, C. S., G. L. Li, Q. Li, H. Auld, and C. Fu, 2012: Possible impacts of climate change on wind gusts under downscaled future climate conditions over Ontario, Canada. J. Climate, 25, 33903408, doi:10.1175/JCLI-D-11-00198.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, C. S., E. Lopes, C. Fu, and Z. Huang, 2014: Possible impacts of climate change on wind gusts under downscaled future climate conditions: Updated for Canada. J. Climate, 27, 12551270, doi:10.1175/JCLI-D-13-00020.1.

    • Search Google Scholar
    • Export Citation
  • Choi, E. C. C., and F. A. Hidayat, 2002: Gust factors for thunderstorm and non-thunderstorm winds. J. Wind Eng. Ind. Aerodyn., 90, 16831696, doi:10.1016/S0167-6105(02)00279-9.

    • Search Google Scholar
    • Export Citation
  • Coleman, J. S. M., and K. Klink, 2009: North American atmospheric circulation effects on Midwestern USA climate. Understanding Climate Change: Climate Variability, Predictability and Change in the Midwestern United States, S. C. Pryor, Ed., Indiana University Press, 156–168.

  • Cook, N. J., 1986: The Designer’s Guide to Wind Loading of Building Structures: Part 1: Background, Damage Survey, Wind Data and Structural Classification. Butterworth-Heinemann, 383 pp.

  • Cusack, S., 2013: A 101 year record of windstorms in the Netherlands. Climatic Change, 116, 693704, doi:10.1007/s10584-012-0527-0.

  • De Angelis, S., and P. Bodin, 2012: Watching the wind: Seismic data contamination at long periods due to atmospheric pressure-field-induced tilting. Bull. Seismol. Soc. Amer., 102, 12551265, doi:10.1785/0120110186.

    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., M. A. Liniger, C. Appenzeller, D. N. Bresch, P. Kollner-Heck, and V. Muccione, 2010: Improved estimates of the European winter windstorm climate and the risk of reinsurance loss using climate model data. J. Appl. Meteor. Climatol., 49, 20922120, doi:10.1175/2010JAMC2133.1.

    • Search Google Scholar
    • Export Citation
  • Durst, C. S., 1960: Wind speeds over short periods of time. Meteor. Mag., 89, 181187.

  • Easterling, D. R., and P. J. Robinson, 1985: The diurnal variation of thunderstorm activity in the United States. J. Appl. Meteor. Climatol., 24, 10481058, doi:10.1175/1520-0450(1985)024<1048:TDVOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., T. Brücher, V. Ermert, A. Krüger, and J. G. Pinto, 2009: The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci., 9, 405423, doi:10.5194/nhess-9-405-2009.

    • Search Google Scholar
    • Export Citation
  • Gardiner, B., H. Peltola, and S. Kellomaki, 2000: Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol. Modell., 129, 123, doi:10.1016/S0304-3800(00)00220-9.

    • Search Google Scholar
    • Export Citation
  • Greenway, M. E., 1979: Analytical approach to wind velocity gust factors. J. Ind. Aerodyn., 5, 6191, doi:10.1016/0167-6105(79)90025-4.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., 2002: Data documentation for data set 6421 (DSI-6421): Enhanced hourly wind station data for the contiguous United States. National Climatic Data Center Rep., 11 pp. [Available online at http://rda.ucar.edu/datasets/ds471.0/docs/td6421-3.pdf.]

  • Hagemeyer, B. C., 1991: A low-tropospheric thermodynamic climatology for March through September: Some implications for thunderstorm forecasting. Wea. Forecasting, 6, 254270, doi:10.1175/1520-0434(1991)006<0254:ALTTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • He, Y. C., P. W. Chan, and Q. S. Li, 2013: Wind characteristics over different terrains. J. Wind Eng. Ind. Aerodyn., 120, 5169, doi:10.1016/j.jweia.2013.06.016.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1996: A new conceptual model for cyclones generated in the lee of the Rocky Mountains. Bull. Amer. Meteor. Soc., 77, 11691178, doi:10.1175/1520-0477(1996)077<1169:ANCMFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoch, J., and P. Markowski, 2005: A climatology of springtime dryline position in the U.S. Great Plains region. J. Climate, 18, 21322137, doi:10.1175/JCLI3392.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, doi:10.1016/j.jhydrol.2005.07.003.

    • Search Google Scholar
    • Export Citation
  • Krayer, W. R., and R. D. Marshall, 1992: Gust factors applied to hurricane winds. Bull. Amer. Meteor. Soc., 73, 613617, doi:10.1175/1520-0477(1992)073<0613:GFATHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristensen, L., 1998: Cup anemometer behavior in turbulent environments. J. Atmos. Oceanic Technol., 15, 517, doi:10.1175/1520-0426(1998)015<0005:CABITE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristensen, L., M. Casanova, M. S. Courtney, and I. Troen, 1991: In search of a gust definition. Bound.-Layer Meteor., 55, 91107, doi:10.1007/BF00119328.

    • Search Google Scholar
    • Export Citation
  • Lockridge, J. S., M. J. Fouch, and J. R. Arrowsmith, 2012: Seismicity within Arizona during the deployment of the EarthScope USArray Transportable Array. Bull. Seismol. Soc. Amer., 102, 18501863, doi:10.1785/0120110297.

    • Search Google Scholar
    • Export Citation
  • Moore, P. H., and R. V. Osgood, 1985: Assessment of sugarcane crop damage and yield loss caused by high winds of hurricanes. Agric. For. Meteor., 35, 267279, doi:10.1016/0168-1923(85)90089-9.

    • Search Google Scholar
    • Export Citation
  • NOAA, 1998: Automated Surface Observing System (ASOS) user’s guide. National Ocean and Atmospheric Administration Rep., 72 pp. [Available online at http://www.nws.noaa.gov/asos/aum-toc.pdf.]

  • Paulsen, B. M., and J. L. Schroeder, 2005: An examination of tropical and extratropical gust factors and the associated wind speed histograms. J. Appl. Meteor., 44, 270280, doi:10.1175/JAM2199.1.

    • Search Google Scholar
    • Export Citation
  • Peltola, H. M., 2006: Mechanical stability of trees under static loads. Amer. J. Bot., 93, 15011511, doi:10.3732/ajb.93.10.1501.

  • Peltola, H. M., V. P. Ikonen, H. Gregow, H. Strandman, A. Kilpelainen, A. Venalainen, and S. Kellomaki, 2010: Impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. For. Ecol. Manage., 260, 833845, doi:10.1016/j.foreco.2010.06.001.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Spatial coherency of extreme weather events in Germany and Switzerland. Int. J. Climatol., 32, 18631874, doi:10.1002/joc.2401.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 2013a: Assessing the vulnerability of wind energy to climate change and extreme events. Climatic Change, 121, 7991, doi:10.1007/s10584-013-0889-y.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and R. J. Barthelmie, 2013b: Renewable energy resources—Ocean energy: Wind–wave–tidal–sea currents. Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, R. Pielke, Ed., Academic Press, 65–81.

  • Pryor, S. C., and R. J. Barthelmie, 2014: Hybrid downscaling of wind climates over the eastern USA. Environ. Res. Lett., 9, 024013, doi:10.1088/1748-9326/9/2/024013.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and Coauthors, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, doi:10.1029/2008JD011416.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, and J. T. Schoof, 2012: Past and future wind climates over the contiguous USA based on the North American Regional Climate Change Assessment Program model suite. J. Geophys. Res., 117, D19119, doi:10.1029/2012JD017449.

    • Search Google Scholar
    • Export Citation
  • Rauber, R., J. Walsh, and D. Charlevoix, 2002: Severe and Hazardous Weather. Kendall/Hunt, 616 pp.

  • Ricciardulli, L., and P. D. Sardeshmukh, 2002: Local time- and space scales of organized tropical deep convection. J. Climate, 15, 27752790, doi:10.1175/1520-0442(2002)015<2775:LTASSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1999: A short-lived cold front in the southwestern United States. Mon. Wea. Rev., 127, 23952403, doi:10.1175/1520-0493(1999)127<2395:ASLCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Segal, M., W. L. Physick, J. E. Heim, and R. W. Arritt, 1993: The enhancement of cold-front temperature contrast by differential cloud cover. Mon. Wea. Rev., 121, 867873, doi:10.1175/1520-0493(1993)121<0867:TEOCFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., T. E. Castellanos, A. C. Winters, C. M. Mead, A. R. Dean, and R. L. Thompson, 2013: Measured severe convective wind climatology and associated convective modes of thunderstorms in the contiguous United States, 2003–09. Wea. Forecasting, 28, 229236, doi:10.1175/WAF-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, B. C., and J. E. Martin, 2007: A synoptic climatology and composite analysis of the Alberta clipper. Wea. Forecasting, 22, 315333, doi:10.1175/WAF982.1.

    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., and M. S. Johnson, 2012: Probabilistic wind gust forecasting using nonhomogeneous Gaussian regression. Mon. Wea. Rev., 140, 889897, doi:10.1175/MWR-D-11-00075.1.

    • Search Google Scholar
    • Export Citation
  • Trifunac, M. D., 1970: Ambient vibration test of a thirty-nine story steel frame building. Earthquake Engineering Research Laboratory Rep. EERL 70-02, 40 pp. [Available online at http://authors.library.caltech.edu/26406/1/7002.pdf.]

  • Vautard, R., J. Cattiaux, P. Yiou, J. N. Thepaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, doi:10.1038/ngeo979.

    • Search Google Scholar
    • Export Citation
  • Weggel, J. R., 1999: Maximum daily wind gusts related to mean daily wind speed. J. Struct. Eng., 125, 465468, doi:10.1061/(ASCE)0733-9445(1999)125:4(465).

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. D. Bian, and S. Y. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, doi:10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and A. J. Bedard, 2004: A new turbulence microbarometer and its evaluation using the budget of horizontal heat flux. J. Atmos. Oceanic Technol., 21, 11701181, doi:10.1175/1520-0426(2004)021<1170:ANTMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wong, C. J., and M. D. Miller, Eds., 2010: Guidelines for Electrical Transmission Line Structural Loading. ASCE, 204 pp.

  • Yu, B., and A. G. Chowdhury, 2009: Gust factors and turbulence intensities for the tropical cyclone environment. J. Appl. Meteor. Climatol., 48, 534552, doi:10.1175/2008JAMC1906.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., T. Kijewski, and A. Kareem, 2002: Along-wind load effects on tall buildings: Comparative study of major international codes and standards. J. Struct. Eng., 128, 788796, doi:10.1061/(ASCE)0733-9445(2002)128:6(788).

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 426 126 7
PDF Downloads 396 91 3