• Barkstrom, B. R., and G. L. Smith, 1986: The Earth Radiation Budget Experiment: Science and implementation. Rev. Geophys., 24, 379390, doi:10.1029/RG024i002p00379.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., E. F. Harrison, G. L. Smith, R. N. Green, J. F. Kibler, R. Cess, and the ERBE Science Team, 1989: Earth Radiation Budget Experiment (ERBE) archival and April 1985 results. Bull. Amer. Meteor. Soc., 70, 12541262, doi:10.1175/1520-0477(1989)070<1254:ERBEAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1996: Diurnal variations of cloud cover and their relationship to climatological conditions. J. Climate, 9, 28022820, doi:10.1175/1520-0442(1996)009<2802:DVOCCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, D. R., E. F. Harrison, P. Minnis, J. T. Suttles, and R. S. Kandel, 1986: Development of algorithms for understanding the temporal and spatial variability of Earth radiation balance. Rev. Geophys., 24, 422438, doi:10.1029/RG024i002p00422.

    • Search Google Scholar
    • Export Citation
  • Buell, C. E., 1978: The number of significant proper functions of two-dimensional fields. J. Appl. Meteor., 17, 717722, doi:10.1175/1520-0450(1978)017<0717:TNOSPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, doi:10.1175/JTECH-D-12-00136.1.

    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., P. Minnis, and G. G. Gibson, 1983: Orbital and cloud cover sampling analyses for multi-satellite Earth radiation budget experiments. J. Spacecr. Rockets, 20, 491495, doi:10.2514/3.25634.

    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., D. R. Brooks, P. Minnis, B. A. Wielicki, W. F. Staylor, G. G. Gibson, D. F. Young, and F. M. Denn, 1988: First estimates of the diurnal variation of longwave radiation from the multiple-satellite Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 69, 11441151, doi:10.1175/1520-0477(1988)069<1144:FEOTDV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., and J. M. Austin, 1944: Climatology. McGraw-Hill, 410 pp.

  • Hendon, H. H., and K. Woodberry, 1993: The diurnal cycle of tropical convection. J. Geophys. Res., 98, 16 62316 637, doi:10.1029/93JD00525.

    • Search Google Scholar
    • Export Citation
  • Kondragunta, C. R., and A. Gruber, 1994: Diurnal variation of the ISCCP cloudiness. Geophys. Res. Lett., 21, 20152018, doi:10.1029/94GL01459.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed. International Geophysics Series, Vol. 84, Academic Press, 583 pp.

  • Minnis, P., and E. F. Harrison, 1984: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part II: November 1978 cloud results. J. Climate Appl. Meteor., 23, 10121031, doi:10.1175/1520-0450(1984)023<1012:DVORCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., S. Mayor, W. L. Smith Jr., and D. F. Young, 1997: Asymmetry in the diurnal variation of surface albedo. IEEE Trans. Geosci. Remote Sens., 35, 879891, doi:10.1109/36.602530.

    • Search Google Scholar
    • Export Citation
  • Mlynczak, P. E., G. L. Smith, and D. R. Doelling, 2011: The annual cycle of Earth radiation budget from Clouds and the Earth’s Radiant Energy System (CERES) data. J. Appl. Meteor. Climatol., 50, 24902503, doi:10.1175/JAMC-D-11-050.1.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., T. H. Vonder Haar, W. R. Bandeen, and M. Pasternak, 1973: The annual radiation balance of the Earth–atmosphere system during 1969–70 from Nimbus 3 measurements. J. Atmos. Sci., 30, 341364, doi:10.1175/1520-0469(1973)030<0341:TARBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variability of marine stratiform cloud. J. Climate, 8, 17951809, doi:10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., and G. L. Smith, 1997: Spatial variability of reflected solar radiation, Proc. Ninth Conf. on Atmospheric Radiation, Long Beach, CA, Amer. Meteor. Soc., 135–138.

  • Sellers, W. D., 1965: Physical Climatology. University of Chicago Press, 272 pp.

  • Smith, G. L., 2006: Error propagation through principal components. Proc. 18th Conf. on Probability and Statistics in the Atmospheric Sciences, Atlanta, GA, Amer. Meteor. Soc., 9.3. [Available online at https://ams.confex.com/ams/pdfpapers/101138.pdf.]

  • Smith, G. L., and D. A. Rutan, 2003: The diurnal cycle of outgoing longwave radiation from Earth Radiation Budget Experiment measurements. J. Atmos. Sci., 60, 15291542, doi:10.1175/2997.1.

    • Search Google Scholar
    • Export Citation
  • Smith, G. L., D. A. Rutan, T. P. Charlock, and T. D. Bess, 1990: Annual and interannual variations of reflected solar radiation based on a 10-year data set. J. Geophys. Res., 95, 16 63916 652, doi:10.1029/JD095iD10p16639.

    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., and Coauthors, 1988: Angular radiation models for Earth-atmosphere system. Vol. I—Shortwave models. NASA Reference Publ. 1184, 152 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880018293.pdf.]

  • Taylor, P. C., 2012: Tropical outgoing longwave radiation and longwave cloud forcing diurnal cycles in the tropics. J. Atmos. Sci., 69, 36523669, doi:10.1175/JAS-D-12-088.1.

    • Search Google Scholar
    • Export Citation
  • Trémas, T. L., N. Karouche, A. Rosak, A. Meygret, O. Aznay, and E. Hillairet, 2012: ScaRaB: First results of the scanner for radiative budget on board the Indo-French satellite Megha-Tropiques. Earth Observing Systems XVII, J. J. Butler, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 8510), doi:10.1117/12.928293.

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 561 334 18
PDF Downloads 454 280 35

Diurnal Variations of Albedo Retrieved from Earth Radiation Budget Experiment Measurements

View More View Less
  • 1 Science Systems Applications, Inc., Hampton, Virginia
  • | 2 Science Directorate, NASA Langley Research Center, Hampton, Virginia
Restricted access

Abstract

Five years of measurements from the Earth Radiation Budget Satellite (ERBS) have been analyzed to define the diurnal cycle of albedo from 55°N to 55°S. The ERBS precesses through all local times every 72 days so as to provide data regarding the diurnal cycles for Earth radiation. Albedo together with insolation at the top of the atmosphere is used to compute the heating of the Earth–atmosphere system; thus its diurnal cycle is important in the energetics of the climate system. A principal component (PC) analysis of the diurnal variation of top-of-atmosphere albedo using these data is presented. The analysis is done separately for ocean and land because of the marked differences of cloud behavior over ocean and over land. For ocean, 90%–92% of the variance in the diurnal cycle is described by a single component; for land, the first PC accounts for 83%–89% of the variance. Some of the variation is due to the increase of albedo with increasing solar zenith angle, which is taken into account in the ERBS data processing by a directional model, and some is due to the diurnal cycle of cloudiness. The second PC describes 2%–4% of the variance for ocean and 5% for land, and it is primarily due to variations of cloudiness throughout the day, which are asymmetric about noon. These terms show the response of the atmosphere to the cycle of solar heating. The third PC for ocean is a two-peaked curve, and the associated map shows high values in cloudy regions.

Corresponding author address: G. Louis Smith, Mail Stop 420, Langley Research Center, Hampton, VA 23681. E-mail: george.l.smith@nasa.gov

Abstract

Five years of measurements from the Earth Radiation Budget Satellite (ERBS) have been analyzed to define the diurnal cycle of albedo from 55°N to 55°S. The ERBS precesses through all local times every 72 days so as to provide data regarding the diurnal cycles for Earth radiation. Albedo together with insolation at the top of the atmosphere is used to compute the heating of the Earth–atmosphere system; thus its diurnal cycle is important in the energetics of the climate system. A principal component (PC) analysis of the diurnal variation of top-of-atmosphere albedo using these data is presented. The analysis is done separately for ocean and land because of the marked differences of cloud behavior over ocean and over land. For ocean, 90%–92% of the variance in the diurnal cycle is described by a single component; for land, the first PC accounts for 83%–89% of the variance. Some of the variation is due to the increase of albedo with increasing solar zenith angle, which is taken into account in the ERBS data processing by a directional model, and some is due to the diurnal cycle of cloudiness. The second PC describes 2%–4% of the variance for ocean and 5% for land, and it is primarily due to variations of cloudiness throughout the day, which are asymmetric about noon. These terms show the response of the atmosphere to the cycle of solar heating. The third PC for ocean is a two-peaked curve, and the associated map shows high values in cloudy regions.

Corresponding author address: G. Louis Smith, Mail Stop 420, Langley Research Center, Hampton, VA 23681. E-mail: george.l.smith@nasa.gov
Save