• Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471170, doi:10.1175/JAMC-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and L. J. Battan, 1980: Radar backscattering by inhomogeneous precipitation particles. J. Atmos. Sci., 37, 18211827, doi:10.1175/1520-0469(1980)037<1821:RBBIPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. Wiley-Interscience, 530 pp.

  • Bohren, C. F., and S. B. Singham, 1991: Backscattering by nonspherical particles: A review of methods and suggested new approaches. J. Geophys. Res., 96, 52695277, doi:10.1029/90JD01138.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, J. Verlinde, A. E. Avramov, A. S. Ackerman, A. M. Fridlind, G. M. McFarquhar, and M. Wolde, 2011: Millimeter wave scattering from ice crystal aggregates: Comparing cloud model simulations with X- and Ka-band radar measurements. J. Geophys. Res., 116, D00T04, doi:10.1029/2011JD015909.

    • Search Google Scholar
    • Export Citation
  • Boucher, R. J., and J. G. Wieler, 1985: Radar determination of snowfall rate and accumulation. J. Climate Appl. Meteor., 24, 6873, doi:10.1175/1520-0450(1985)024<0068:RDOSRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bruggeman, D. A. G., 1935: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen (Calculation of various physical constants of heterogeneous substances. I. Dielectric constants and conductivities of the mixed compound from isotropic substances). Ann. Phys., 416, 636664, doi:10.1002/andp.19354160705.

    • Search Google Scholar
    • Export Citation
  • Clausius, R., 1879: The Mechanical Theory of Heat. Macmillan, 373 pp.

  • Davis, S. M., L. M. Avallone, E. M. Weinstock, C. H. Twohy, J. B. Smith, and G. L. Kok, 2007: Comparisons of in situ measurements of cirrus cloud ice water content. J. Geophys. Res., 112, D10212, doi:10.1029/2006JD008214.

    • Search Google Scholar
    • Export Citation
  • Debye, P., 1909: Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index (Approximate formulas for the cylinder functions for large values of the argument and unlimited variable values of the index). Math. Ann.,67, 535–558, doi:10.1007/BF01450097.

  • Delanoë, J., and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. Mace, Z. Zhein, and H. Okamoto, 2010: Tropical Composition, Cloud, and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • DeVoe, H., 1964: Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys., 41, 393400, doi:10.1063/1.1725879.

    • Search Google Scholar
    • Export Citation
  • Dorsi, S. W., 2013: Airborne and surface-level in situ observations of wintertime clouds in the southern Rockies. Ph.D. dissertation, University of Colorado, 204 pp.

  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Draine, B. T., and P. J. Flatau, 1994: The discrete dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 14911499, doi:10.1364/JOSAA.11.001491.

    • Search Google Scholar
    • Export Citation
  • ESA, 2004: EarthCARE—Earth Clouds, Aerosols and Radiation Explorer. European Space Agency SP-1279(1), 60 pp. [Available online at http://esamultimedia.esa.int/docs/SP_1279_1_EarthCARE.pdf.]

  • Gans, R., 1925: Mikroskopische Probleme (Microscopic problems). Ann. Phys., 383, 134, doi:10.1002/andp.19253831702.

  • Gerber, H., B. Arends, and A. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252, doi:10.1016/0169-8095(94)90001-9.

    • Search Google Scholar
    • Export Citation
  • Goedecke, G. H., and S. G. O’Brien, 1988: Scattering by irregular inhomogeneous particles via the digitized Green’s function algorithm. Appl. Opt., 27, 2431243, doi:10.1364/AO.27.002431.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 329, doi:10.1175/1520-0469(2002)059<0003:AGAFDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved Representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033319, doi:10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285309, doi:10.1175/2009JAS3132.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and C. D. Westbrook, 2014: Equation for the microwave backscatter cross section of aggregate snowflakes using the self-similar Rayleigh–Gans approximation. J. Atmos. Sci., 71, 32923301, doi:10.1175/JAS-D-13-0347.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., D. Bouniol, D. N. Ladd, E. J. O’Connor, and A. J. Illingworth, 2003: Absolute calibration of 94/95-GHz radars using rain. J. Atmos. Oceanic Technol., 20, 572580, doi:10.1175/1520-0426(2003)20<572:ACOGRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. R. Tian, A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, doi:10.1175/JAMC-D-11-074.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. T., G. W. Petty, and G. Skofronick-Jackson, 2012: Microwave properties of ice-phase hydrometeors for radar and radiometers: Sensitivity to model assumptions. J. Appl. Meteor. Climatol., 51, 21522171, doi:10.1175/JAMC-D-11-0138.1.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng, 2010: Uncertainties in microwave properties of frozen precipitation: Implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, doi:10.1175/2010JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1 (19), 226242, doi:10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1980: An Introduction to Atmospheric Radiation. Academic Press, 392 pp.

  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, A. G. Hallar, I. B. McCubbin, S. Y. Matrosov, and M. D. Shupe, 2013: Enhanced radar backscatter due to oriented particles at 95 GHz during StormVEx. J. Atmos. Oceanic Technol., 30, 23362352, doi:10.1175/JTECH-D-13-00005.1.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1992: Radar reflectivity in snowfall. IEEE Trans. Geosci. Remote Sens., 30, 454461, doi:10.1109/36.142923.

  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, doi:10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. J. Heymsfield, and Z. Wang, 2005a: Dual frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L113816, doi:10.1029/2005GL023210.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005b: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, doi:10.1175/JAS-3356.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., G. G. Mace, R. Marchand, M. D. Shupe, A. G. Hallar, and I. B. McCubbin, 2012: Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008, doi:10.1175/JTECH-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • Maxwell Garnett, J. C., 1904: Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, 203A, 385420, doi:10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen (Contributions on the optics of turbid media, particularly colloidal metal solutions). Ann. Phys., 330, 377445, doi:10.1002/andp.19083300302.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535575, doi:10.1016/0022-4073(96)00002-7.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mossotti, O. F., 1850: Analytical discussion on the influence that the action of a dielectric medium has on the distribution of electricity to the surface of more electric bodies scattered in it. Mem. Math. Fis. Modena. 24 (II), 49–74.

  • Ohtake, T., and T. Henmi, 1970: Radar reflectivity of aggregated snowflakes. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 209210.

  • Okamoto, H., 2002: Information content of the 95-GHz cloud radar signals: Theoretical assessment of effects of nonsphericity and error evaluation of the discrete dipole approximation. J. Geophys. Res., 107, 4628, doi:10.1029/2001JD001386.

    • Search Google Scholar
    • Export Citation
  • Penttilä, A., E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, 2007: Comparison between discrete dipole implementations and exact techniques. J. Quant. Spectrosc. Radiat. Transfer, 106, 417436, doi:10.1016/j.jqsrt.2007.01.026.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, doi:10.1175/2009JAS3146.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., J. Delanoë, D. Bouniol, A. J. Heymsfield, A. Bansemer, and P. Brown, 2007: Evaluation of ice water content retrievals from cloud radar reflectivity and temperature using a large airborne in situ microphysical database. J. Appl. Meteor. Climatol., 46, 557572, doi:10.1175/JAM2488.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

  • Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J., 186, 705714, doi:10.1086/152538.

    • Search Google Scholar
    • Export Citation
  • Rayleigh, J. S., 1881: On the electromagnetic theory of light. Philos. Mag., 12, 81101, doi:10.1080/14786448108627074.

  • Reinking, R. F., S. Y. Matrosov, B. E. Martner, and R. A. Kropfli, 1997: Dual-polarization radar to identify drizzle, with application to aircraft icing avoidance. J. Aircr., 34, 778784, doi:10.2514/2.2243.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding, Theory and Practice. Series on Atmospheric Oceanic and Planetary Physics, Vol. 2, World Scientific, 240 pp.

  • Rysselberghe, P. V., 1932: Remarks concerning the Clausius–Mossotti law. J. Phys. Chem., 36, 11521155, doi:10.1021/j150334a007.

  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, doi:10.1175/2009JAS3187.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T. L., and G. L. Stephens, 1995: Theoretical aspects of modeling backscattering by cirrus ice particles at millimeter wavelengths. J. Atmos. Sci., 52, 43674385, doi:10.1175/1520-0469(1995)052<4367:TAOMBB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 2010: Snow studies. Part II: Average relationship between mass of snowflakes and their terminal velocity. J. Atmos. Sci., 67, 33193335, doi:10.1175/2010JAS3390.1.

    • Search Google Scholar
    • Export Citation
  • Taflove, A., and M. E. Brodwin, 1975: Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equation, microwave theory and techniques. IEEE Trans. Microwave Theory Tech.,23, 623630, doi:10.1109/TMTT.1975.1128640.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen, 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., J. Leinonen, C. D. Westbrook, D. Moisseev, and T. Nousianen, 2013: Applicability of the Rayleigh–Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence. J. Geophys. Res., 118, 18261839, doi:10.1002/jgrd.50167.

    • Search Google Scholar
    • Export Citation
  • Van de Hulst, H. C., 1957: Light Scattering by Small Particles. General Publishing, 470 pp.

  • Waterman, P. C., 1965: Matrix formulation of electromagnetic scattering. Proc. IEEE, 53, 805, doi:10.1109/PROC.1965.4058.

  • Westbrook, C. D., R. C. Ball, and P. R. Field, 2006: Radar scattering by aggregate snowflakes. Quart. J. Roy. Meteor. Soc., 132, 897914, doi:10.1256/qj.05.82.

    • Search Google Scholar
    • Export Citation
  • Xu, Y.-L., 1995: Electromagnetic scattering by an aggregate of spheres. Appl. Opt., 34, 45734588, doi:10.1364/AO.34.004573.

  • Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 22342247, doi:10.1016/j.jqsrt.2011.01.031.

    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., and M. Kahnert, 2013: Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 123, 176183, doi:10.1016/j.jqsrt.2012.10.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 310 172 16
PDF Downloads 201 109 9

Characterizing the Radar Backscatter-Cross-Section Sensitivities of Ice-Phase Hydrometeor Size Distributions via a Simple Scaling of the Clausius–Mossotti Factor

View More View Less
  • 1 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
  • | 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder Colorado
Restricted access

Abstract

One of the challenges that limit the amount of information that can be inferred from radar measurements of ice and mixed-phase precipitating clouds is the variability in ice mass within hydrometeors. The variable amount of ice mass within particles of a given size drives further variability in single-scattering properties that results in uncertainties of forward-modeled remote sensing quantities. Nonspherical ice-phase hydrometeors are often approximated as spheroids to simplify the calculation of single-scattering properties, yet offline calculations remain necessary to quantify these radiative properties as a function of size in discrete increments. In this paper, a simple scaling of the Clausius–Mossotti factor is used that allows for an approximation of the scattering and extinction cross sections for an arbitrary mass–dimensional power-law relationship of a nonspherical particle given a single T-matrix calculation. Using data collected by the University of Wyoming King Air in snow clouds over the Colorado Park Range, the uncertainty in forward-modeled radar reflectivity to assumptions regarding mass–dimensional relationships is examined. This is accomplished by taking advantage of independently measured condensed mass and particle size distributions to estimate the variability of the prefactor in the mass–dimensional power law. Then, calculating the partial derivative of the radar backscatter cross sections using the scaling relationships, an estimate is made of the statistical uncertainty in forward-modeled radar reflectivity. Uncertainties on the order of 4 dB are found in this term for the dataset considered.

Corresponding author address: Gerald G. Mace, Dept. of Atmospheric Sciences, University of Utah, Rm. 819 (819 WBB), 135 S. 1460 East, Salt Lake City, UT 84112-0110. E-mail: jay.mace@utah.edu

Abstract

One of the challenges that limit the amount of information that can be inferred from radar measurements of ice and mixed-phase precipitating clouds is the variability in ice mass within hydrometeors. The variable amount of ice mass within particles of a given size drives further variability in single-scattering properties that results in uncertainties of forward-modeled remote sensing quantities. Nonspherical ice-phase hydrometeors are often approximated as spheroids to simplify the calculation of single-scattering properties, yet offline calculations remain necessary to quantify these radiative properties as a function of size in discrete increments. In this paper, a simple scaling of the Clausius–Mossotti factor is used that allows for an approximation of the scattering and extinction cross sections for an arbitrary mass–dimensional power-law relationship of a nonspherical particle given a single T-matrix calculation. Using data collected by the University of Wyoming King Air in snow clouds over the Colorado Park Range, the uncertainty in forward-modeled radar reflectivity to assumptions regarding mass–dimensional relationships is examined. This is accomplished by taking advantage of independently measured condensed mass and particle size distributions to estimate the variability of the prefactor in the mass–dimensional power law. Then, calculating the partial derivative of the radar backscatter cross sections using the scaling relationships, an estimate is made of the statistical uncertainty in forward-modeled radar reflectivity. Uncertainties on the order of 4 dB are found in this term for the dataset considered.

Corresponding author address: Gerald G. Mace, Dept. of Atmospheric Sciences, University of Utah, Rm. 819 (819 WBB), 135 S. 1460 East, Salt Lake City, UT 84112-0110. E-mail: jay.mace@utah.edu
Save