• Atlas, D., R. C. Srivastava, and R. S. Sekon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 135, doi:10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., and A. C. Bemis, 1950: A quantitative study of the “bright band” in radar precipitation echoes. J. Meteor., 7, 145151, doi:10.1175/1520-0469(1950)007<0145:AQSOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., J. P. V. Poiares Baptista, and M. de Iulis, 1999: On the effect of the melting layer on the microwave emission of clouds over the ocean. J. Atmos. Sci., 56, 852867, doi:10.1175/1520-0469(1999)056<0852:TEOTML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Khain, A. Pokrovsky, R. Meneghini, C. Kummerow, F. Marzano, and J. P. V. Poiares Baptista, 2000: Combined cloud–microwave radiative transfer modeling of stratiform rainfall. J. Atmos. Sci., 57, 10821104, doi:10.1175/1520-0469(2000)057<1082:CCMRTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and L. J. Battan, 1980: Radar backscattering by inhomogeneous precipitation particles. J. Atmos. Sci., 37, 18211827, doi:10.1175/1520-0469(1980)037<1821:RBBIPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and L. J. Battan, 1982: Radar backscattering of microwaves by spongy ice spheres. J. Atmos. Sci., 39, 26232629, doi:10.1175/1520-0469(1982)039<2623:RBOMBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dabberdt, W., J. Koistinen, J. Poutiainen, E. Saltikoff, and H. Turtiainen, 2005: The Helsinki Mesoscale Testbed: An invitation to use a new 3-D observation network. Bull. Amer. Meteor. Soc., 86, 906907, doi:10.1175/BAMS-86-7-906.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56, 35933600, doi:10.1175/1520-0469(1999)056<3593:MOTMLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., and M. Pfeifer, 2008: Intercomparison of simulations using 5 WRF microphysical schemes with dual-polarization data for a German squall line. Adv. Geosci., 16, 109116, doi:10.5194/adgeo-16-109-2008.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Heffernan, E., and J. Marwitz, 1996: The Front Range blizzard of 1990. Part II: Melting effect in a convective band. Mon. Wea. Rev., 124, 24692482, doi:10.1175/1520-0493(1996)124<2469:TFRBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., and B. Aaron, 2013: Properties of ice cloud and melting layer from LPVEx, MC3E and GCPEx. 2013 PMM Science Team Meeting, Annapolis, MD, NASA.

  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Nakajima, A. P. Khain, K. Saito, T. Takemura, H. Okamoto, T. Nishizawa, and W.-K. Tao, 2012a: Evaluation of cloud microphysics in JMA-NHM simulations using bin or bulk microphysical schemes through comparison with cloud radar observations. J. Atmos. Sci., 69, 25662586, doi:10.1175/JAS-D-11-0213.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2012b: Numerical analysis using WRF-SBM for the cloud microphysical structures in the C3VP field campaign: Impacts of supercooled droplets and resultant riming on snow microphysics. J. Geophys. Res., 117, D23206, doi:10.1029/2012JD018101.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF Model with spectral bin microphysics. J. Atmos. Sci., 67, 365384, doi:10.1175/2009JAS3210.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, D. Rosenfeld, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146, doi:10.1016/j.atmosres.2010.09.015.

    • Search Google Scholar
    • Export Citation
  • Khain, A., V. Phillips, N. Benmoshe, and A. Pokrovsky, 2012: The role of small soluble aerosols in the microphysics of deep maritime clouds. J. Atmos. Sci., 69, 27872807, doi:10.1175/2011JAS3649.1.

    • Search Google Scholar
    • Export Citation
  • Klaassen, W., 1988: Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45, 37413753, doi:10.1175/1520-0469(1988)045<3741:ROASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Köhler, H., 1936: The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc., 32, 11521161, doi:10.1039/tf9363201152.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164, doi:10.1175/JAS3879.1.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., W. Petersen, and D. Moiseev, 2010: Light Precipitation Validation Experiment (LPVEx). LPVEx Science Plan (6/7/10 draft), 29 pp. [Available online at http://lpvex.atmos.colostate.edu/docs/lpvex_science_plan_June2010.pdf.]

  • Löffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and C. D. Kummerow, 2005: Combined radar and radiometer analysis of precipitation profiles for a parametric retrieval algorithm. J. Atmos. Oceanic Technol., 22, 909929, doi:10.1175/JTECH1751.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2008: Assessment of radar signal attenuation caused by the melting hydrometeor layer. IEEE Trans. Geosci. Remote Sens., 46, 10391047, doi:10.1109/TGRS.2008.915757.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., X. Zeng, W.-K. Tao, H. Masunaga, W. Olson, and S. Lang, 2009: Evaluation of long-term cloud-resolving model simulations using satellite radiance observations and multifrequency satellite simulators. J. Atmos. Oceanic Technol., 26, 12611274, doi:10.1175/2008JTECHA1168.1.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2013: GPM satellite simulator over ground validation sites. Bull. Amer. Meteor. Soc., 94, 16531660, doi:10.1175/BAMS-D-12-00160.1.

    • Search Google Scholar
    • Export Citation
  • Maxwell Garnett, J. C., 1904: Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, 203A, 385420, doi:10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • METEK, 2009: MRR physical basics, version 5.2.0.1. METEK GmbH Manual, 20 pp. [Available online at http://www2.meteo.uni-bonn.de/mitarbeiter/stroemel/doku.php/meteorological_laboratory.]

  • Misumi, R., H. Motoyoshi, S. Yamaguchi, S. Nakai, M. Ishizaka, and Y. Fujiyoshi, 2014: Empirical relationships for estimating liquid water fraction of melting snowflakes. J. Appl. Meteor. Climatol., 53, 22322245, doi:10.1175/JAMC-D-13-0169.1.

    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584591, doi:10.1175/1520-0469(1990)047<0584:AWTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., P. Bauer, N. F. Viltard, D. E. Johnson, W.-K. Tao, R. Meneghini, and L. Liao, 2001: A melting-layer model for passive/active microwave remote sensing applications. Part I: Model formulation and comparison with observations. J. Appl. Meteor., 40, 11451163, doi:10.1175/1520-0450(2001)040<1145:AMLMFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, and T. Andersson, 2002: Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res., 7, 353362. [Available online at http://www.biral.com/imagprod/downloads/ref4ber7-353.pdf.]

    • Search Google Scholar
    • Export Citation
  • Phillips, V., A. Khain, and A. Pokrovsky, 2007: The influence of time-dependent melting on the dynamics and precipitation production in maritime and continental storm clouds. J. Atmos. Sci., 64, 338359, doi:10.1175/JAS3832.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Oxford University Press, 914 pp.

  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, doi:10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius > 500 μm. J. Atmos. Sci., 41, 381, doi:10.1175/1520-0469(1984)041<0381:AWTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schols, J. A., J. A. Weinman, R. E. Stewart, and R. P. Lawson, 1995: The retrieval of dry and wet snow distributions from SSM/I measurements and MM5 forecast results. Proc. 1995 Int. Geoscience and Remote Sensing Symp., Florence, Italy, IEEE, 887889. [Available online at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=521087.]

  • Smith, C. J., 1986: The reduction of errors caused by bright bands in quantitative rainfall measurements made using radar. J. Atmos. Oceanic Technol., 3, 129141, doi:10.1175/1520-0426(1986)003<0129:TROECB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56, 35733592, doi:10.1175/1520-0469(1999)056<3573:MOTMLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J. R. Scala, B. Ferrier, and J. Simpson, 1995: The effect of melting processes on the development of a tropical and a midlatitude squall line. J. Atmos. Sci., 52, 19341948, doi:10.1175/1520-0469(1995)052<1934:TEOMPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of droplet size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, doi:10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, and K. R. Wolff, 2005: Error characteristics of rainfall measurements by collocated Joss–Waldvogel disdrometers. J. Atmos. Oceanic Technol., 22, 513527, doi:10.1175/JTECH1734.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 19211940, doi:10.1175/1520-0493(1995)123<1921:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., W. Szyrmter, C. Bell, and F. Fabry, 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62, 37053723, doi:10.1175/JAS3563.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 327 206 16
PDF Downloads 315 199 26

WRF–SBM Simulations of Melting-Layer Structure in Mixed-Phase Precipitation Events Observed during LPVEx

View More View Less
  • 1 * Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Department of Atmospheric Sciences, Institute of the Earth Science, The Hebrew University of Jerusalem, Jerusalem, Israel
  • | 4 Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
  • | 5 Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
Restricted access

Abstract

Two mixed-phase precipitation events were observed on 21 September and 20 October 2010 over the southern part of Finland during the Light Precipitation Validation Experiment (LPVEx). These events have been simulated using the Weather Research and Forecasting Model coupled with spectral bin microphysics (WRF–SBM). The detailed ice-melting scheme with prognosis of the liquid water fraction during melting enables explicit simulation of microphysical properties in the melting layer. First, the simulations have been compared with C-band 3D radar measurements for the purpose of evaluating the overall profiles of cloud and precipitation. The simulation has some artificial convective patterns and errors in the forecast displacement of the precipitation system. The overall overestimation of reflectivity is consistent with a bias toward the range characterized by large-diameter droplets in the surface drop size distribution. Second, the structure of the melting bands has been evaluated against vertically pointing K-band radar measurements. A peak in reflectivity and a gradual change in Doppler velocity are observed and similarly simulated in the common temperature range from approximately 0° to 3°C. The effectiveness of the time-dependent melting scheme has been justified by intercomparison with a corresponding simulation using an instantaneous melting scheme. A weakness of the new melting scheme is that melting particles having high liquid water fractions on the order of 80%–90% cannot be simulated. This situation may cause underestimation of radar reflectivity in the melting layer because of the assumptions of melting-particle structure used to calculate the scattering properties.

Corresponding author address: Takamichi Iguchi, Mail Code 612, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: takamichi.iguchi@nasa.gov

Abstract

Two mixed-phase precipitation events were observed on 21 September and 20 October 2010 over the southern part of Finland during the Light Precipitation Validation Experiment (LPVEx). These events have been simulated using the Weather Research and Forecasting Model coupled with spectral bin microphysics (WRF–SBM). The detailed ice-melting scheme with prognosis of the liquid water fraction during melting enables explicit simulation of microphysical properties in the melting layer. First, the simulations have been compared with C-band 3D radar measurements for the purpose of evaluating the overall profiles of cloud and precipitation. The simulation has some artificial convective patterns and errors in the forecast displacement of the precipitation system. The overall overestimation of reflectivity is consistent with a bias toward the range characterized by large-diameter droplets in the surface drop size distribution. Second, the structure of the melting bands has been evaluated against vertically pointing K-band radar measurements. A peak in reflectivity and a gradual change in Doppler velocity are observed and similarly simulated in the common temperature range from approximately 0° to 3°C. The effectiveness of the time-dependent melting scheme has been justified by intercomparison with a corresponding simulation using an instantaneous melting scheme. A weakness of the new melting scheme is that melting particles having high liquid water fractions on the order of 80%–90% cannot be simulated. This situation may cause underestimation of radar reflectivity in the melting layer because of the assumptions of melting-particle structure used to calculate the scattering properties.

Corresponding author address: Takamichi Iguchi, Mail Code 612, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: takamichi.iguchi@nasa.gov
Save