• Accadia, C., S. Mariani, M. Casaioli, A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, doi:10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bard, L., and D. A. R. Kristovich, 2012: Trend reversal in Lake Michigan contribution to snowfall. J. App. Meteor. Climatol., 51, 20382046, doi:10.1175/JAMC-D-12-064.1.

    • Search Google Scholar
    • Export Citation
  • Baxter, M. A., C. E. Graves, and J. T. Moore, 2005: A climatology of snow-to-liquid ratio for the contiguous United States. Wea. Forecasting, 20, 729744, doi:10.1175/WAF856.1.

    • Search Google Scholar
    • Export Citation
  • Braham, R. R., and M. J. Dungey, 1984: Quantitative estimates of the effect of Lake Michigan on snowfall. J. Appl. Meteor., 23, 940949, doi:10.1175/1520-0450(1984)023<0940:QEOTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burnett, A. W., M. E. Kirby, H. T. Mullins, and W. P. Patterson, 2003: Increasing Great Lake–effect snowfall during the twentieth century: A regional response to global warming? J. Climate, 16, 35353542, doi:10.1175/1520-0442(2003)016<3535:IGLSDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F. W., and C. W. Liu, 2012: Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ., 10, 209222, doi:10.1007/s10333-012-0319-1.

    • Search Google Scholar
    • Export Citation
  • Clowes, E. S., 1919: Mountain and valley winds at Syracuse, N.Y. Mon. Wea. Rev., 47, 464464, doi:10.1175/1520-0493(1919)47<464:MAVWAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001: Climates of the twentieth and twenty-first centuries simulated by the NCAR Climate System Model. J. Climate, 14, 485519, doi:10.1175/1520-0442(2001)014<0485:COTTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ellis, A. W., and J. J. Johnson, 2004: Hydroclimatic analysis of snowfall trends associated with the North American Great Lakes. J. Hydrometeor., 5, 471486, doi:10.1175/1525-7541(2004)005<0471:HAOSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fortin, D., and S. F. Lamoureux, 2009: Multidecadal hydroclimatic variability in northeastern North America since 1550 AD. Climate Dyn., 33, 427432, doi:10.1007/s00382-008-0422-6.

    • Search Google Scholar
    • Export Citation
  • Grimaldi, R., 2008: Climate teleconnections related to El Niño winters in a lake-effect region of west-central New York. Atmos. Sci. Lett., 9, 1825, doi:10.1002/asl.166.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, doi:10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2005: Estimating extremes in transient climate change simulations. J. Climate, 18, 11561173, doi:10.1175/JCLI3320.1.

    • Search Google Scholar
    • Export Citation
  • Knowles, N., M. D. Dettinger, and D. R. Cayan, 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559, doi:10.1175/JCLI3850.1.

    • Search Google Scholar
    • Export Citation
  • Kocin, P. J., and L. W. Uccellini, 2004: Northeast Snowstorms. Vols 1 and 2, Meteor. Monogr., No. 54, Amer. Meteor. Soc., 818 pp.

  • Kunkel, K. E., N. E. Westcott, and D. A. R. Kristovich, 2000: Climate change and lake-effect snow. Preparing for a Changing Climate: The Potential Consequences of Climate Variability and Change, P. J. Sousounis and J. M. Bisanz, Eds., Office of Research and Development Global Change Research Program, U.S. EPA, 25–28.

  • Kunkel, K. E., N. E. Westcott, and D. A. R. Kristovich, 2002: Effects of climate change on heavy lake-effect snowstorms near Lake Erie. J. Great Lakes Res., 28, 521536, doi:10.1016/S0380-1330(02)70603-5.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., M. A. Palecki, K. G. Hubbard, D. A. Robinson, K. T. Redmond, and D. R. Easterling, 2007: Trend identification in twentieth-century U.S. snowfall: The challenges. J. Atmos. Oceanic Technol., 24, 6473, doi:10.1175/JTECH2017.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., L. Ensor, M. Palecki, D. Easterling, D. Robinson, K. G. Hubbard, and K. Redmond, 2009a: A new look at lake-effect snowfall trends in the Laurentian Great Lakes using a temporally homogenous data set. J. Great Lakes Res., 35, 2329, doi:10.1016/j.jglr.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., M. A. Palecki, L. Ensor, D. Easterling, K. G. Hubbard, D. Robinson, and K. Redmond, 2009b: Trends in twentieth-century U.S. extreme snowfall seasons. J. Climate, 22, 62046216, doi:10.1175/2009JCLI2631.1.

    • Search Google Scholar
    • Export Citation
  • Liu, A. Q., and G. W. K. Moore, 2004: Lake-effect snowstorms over southern Ontario, Canada, and their associated synoptic-scale environment. Mon. Wea. Rev., 132, 25952609, doi:10.1175/MWR2796.1.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and T. M. Smith, 1999: Covariability of aspects of North American climate with global sea surface temperatures on interannual to interdecadal timescales. J. Climate, 12, 289302, doi:10.1175/1520-0442-12.1.289.

    • Search Google Scholar
    • Export Citation
  • Moses, T., G. N. Kiladis, H. F. Diaz, and R. G. Barry, 1987: Characteristics and frequency of reversals in mean sea level pressure in the North Atlantic sector and their relationship to long-term temperature trends. J. Climatol., 7, 1330, doi:10.1002/joc.3370070104.

    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., 1987: Operational forecasting of lake effect snowfall in western and central New York. Wea. Forecasting, 2, 310322, doi:10.1175/1520-0434(1987)002<0310:OFOLES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting through the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, doi:10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NOAA, cited2014: Syracuse, New York annual temperature, precipitation, and snowfall data. National Weather Service, Binghamton, NY. [Available online at http://www.weather.gov/bgm/climateSYRAnnualTotals.]

  • Norton, D. C., and S. J. Bolsenga, 1993: Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. J. Climate, 6, 19431956, doi:10.1175/1520-0442(1993)006<1943:STILEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peace, R. L., Jr., and R. B. Sykes Jr., 1966: Mesoscale study of a lake effect snow storm. Mon. Wea. Rev., 94, 495507, doi:10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., 1993: Impacts of severe winter weather during December 1989 in the Lake Erie snowbelt. J. Climate, 6, 759767, doi:10.1175/1520-0442(1993)006<0759:IOSWWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, D. L. McGinnis, and D. A. Robinson, 1998: Characteristics of snowfall over the eastern half of the United States and relationships with principal modes of low-frequency atmospheric variability. J. Climate, 11, 234250, doi:10.1175/1520-0442(1998)011<0234:COSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.]

  • Wang, J., K. Bai, H. Hu, A. Clites, M. Colton, and B. Lofgren, 2012: Temporal and spatial variability of Great Lakes ice cover, 1973–2010. J. Climate, 25, 13181329, doi:10.1175/2011JCLI4066.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., Z. Yu, L. Li, and G. Bebout, 2010: Major shifts in multidecadal moisture variability in the mid-Atlantic region during the last 240 years. Geophys. Res. Lett., 37, L09702, doi:10.1029/2010GL043133.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 338 249 5
PDF Downloads 254 177 21

Spatiotemporal Snowfall Trends in Central New York

View More View Less
  • 1 Department of Geography, Syracuse University, Syracuse, New York
  • | 2 School of Geosciences, University of South Florida, Tampa, Florida
  • | 3 Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan
  • | 4 College of Marine Science, University of South Florida, Tampa, Florida
Restricted access

Abstract

Central New York State, located at the intersection of the northeastern United States and the Great Lakes basin, is impacted by snowfall produced by lake-effect and non-lake-effect snowstorms. The purpose of this study is to determine the spatiotemporal patterns of snowfall in central New York and their possible underlying causes. Ninety-three Cooperative Observer Program stations are used in this study. Spatiotemporal patterns are analyzed using simple linear regressions, Pearson correlations, principal component analysis to identify regional clustering, and spatial snowfall distribution maps in the ArcGIS software. There are three key findings. First, when the long-term snowfall trend (1931/32–2011/12) is divided into two halves, a strong increase is present during the first half (1931/32–1971/72), followed by a lesser decrease in the second half (1971/72–2011/12). This result suggests that snowfall trends behave nonlinearly over the period of record. Second, central New York spatial snowfall patterns are similar to those for the whole Great Lakes basin. For example, for five distinct regions identified within central New York, regions closer to and leeward of Lake Ontario experience higher snowfall trends than regions farther away and not leeward of the lake. Third, as compared with precipitation totals (0.02), average air temperatures had the largest significant (ρ < 0.05) correlation (−0.56) with seasonal snowfall totals in central New York. Findings from this study are valuable because they provide a basis for understanding snowfall patterns in a region that is affected by both non-lake-effect and lake-effect snowstorms.

Corresponding author address: Justin J. Hartnett, Syracuse University, 900 South Crouse Ave., Syracuse, NY 13244. E-mail: jjhartne@syr.edu

Abstract

Central New York State, located at the intersection of the northeastern United States and the Great Lakes basin, is impacted by snowfall produced by lake-effect and non-lake-effect snowstorms. The purpose of this study is to determine the spatiotemporal patterns of snowfall in central New York and their possible underlying causes. Ninety-three Cooperative Observer Program stations are used in this study. Spatiotemporal patterns are analyzed using simple linear regressions, Pearson correlations, principal component analysis to identify regional clustering, and spatial snowfall distribution maps in the ArcGIS software. There are three key findings. First, when the long-term snowfall trend (1931/32–2011/12) is divided into two halves, a strong increase is present during the first half (1931/32–1971/72), followed by a lesser decrease in the second half (1971/72–2011/12). This result suggests that snowfall trends behave nonlinearly over the period of record. Second, central New York spatial snowfall patterns are similar to those for the whole Great Lakes basin. For example, for five distinct regions identified within central New York, regions closer to and leeward of Lake Ontario experience higher snowfall trends than regions farther away and not leeward of the lake. Third, as compared with precipitation totals (0.02), average air temperatures had the largest significant (ρ < 0.05) correlation (−0.56) with seasonal snowfall totals in central New York. Findings from this study are valuable because they provide a basis for understanding snowfall patterns in a region that is affected by both non-lake-effect and lake-effect snowstorms.

Corresponding author address: Justin J. Hartnett, Syracuse University, 900 South Crouse Ave., Syracuse, NY 13244. E-mail: jjhartne@syr.edu
Save