Cloud Microphysical Properties Retrieved from Downwelling Infrared Radiance Measurements Made at Eureka, Nunavut, Canada (2006–09)

Christopher J. Cox Department of Geography, University of Idaho, Moscow, Idaho

Search for other papers by Christopher J. Cox in
Current site
Google Scholar
PubMed
Close
,
David D. Turner NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
,
Penny M. Rowe Department of Geography, University of Idaho, Moscow, Idaho

Search for other papers by Penny M. Rowe in
Current site
Google Scholar
PubMed
Close
,
Matthew D. Shupe Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Matthew D. Shupe in
Current site
Google Scholar
PubMed
Close
, and
Von P. Walden Department of Geography, University of Idaho, Moscow, Idaho

Search for other papers by Von P. Walden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The radiative properties of clouds are related to cloud microphysical and optical properties, including water path, optical depth, particle size, and thermodynamic phase. Ground-based observations from remote sensors provide high-quality, long-term, continuous measurements that can be used to obtain these properties. In the Arctic, a more comprehensive understanding of cloud microphysics is important because of the sensitivity of the Arctic climate to changes in radiation. Eureka, Nunavut (80°N, 86°25′W, 10 m), Canada, is a research station located on Ellesmere Island. A large suite of ground-based remote sensors at Eureka provides the opportunity to make measurements of cloud microphysics using multiple instruments and methodologies. In this paper, cloud microphysical properties are presented using a retrieval method that utilizes infrared radiances obtained from an infrared spectrometer at Eureka between March 2006 and April 2009. These retrievals provide a characterization of the microphysics of ice and liquid in clouds with visible optical depths between 0.25 and 6, which are a class of clouds whose radiative properties depend greatly on their microphysical properties. The results are compared with other studies that use different methodologies at Eureka, providing context for multimethod perspectives. The authors’ findings are supportive of previous studies, including seasonal cycles in phase and liquid particle size, weak temperature–phase dependencies, and frequent occurrences of supercooled water. Differences in microphysics are found between mixed-phase and single-phase clouds for both ice and liquid. The Eureka results are compared with those obtained using a similar retrieval technique during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment.

Corresponding author address: Christopher J. Cox, University of Idaho Geography Dept., McClure Hall 305B, Moscow, ID 83843. E-mail: ccox@vandals.uidaho.edu

Abstract

The radiative properties of clouds are related to cloud microphysical and optical properties, including water path, optical depth, particle size, and thermodynamic phase. Ground-based observations from remote sensors provide high-quality, long-term, continuous measurements that can be used to obtain these properties. In the Arctic, a more comprehensive understanding of cloud microphysics is important because of the sensitivity of the Arctic climate to changes in radiation. Eureka, Nunavut (80°N, 86°25′W, 10 m), Canada, is a research station located on Ellesmere Island. A large suite of ground-based remote sensors at Eureka provides the opportunity to make measurements of cloud microphysics using multiple instruments and methodologies. In this paper, cloud microphysical properties are presented using a retrieval method that utilizes infrared radiances obtained from an infrared spectrometer at Eureka between March 2006 and April 2009. These retrievals provide a characterization of the microphysics of ice and liquid in clouds with visible optical depths between 0.25 and 6, which are a class of clouds whose radiative properties depend greatly on their microphysical properties. The results are compared with other studies that use different methodologies at Eureka, providing context for multimethod perspectives. The authors’ findings are supportive of previous studies, including seasonal cycles in phase and liquid particle size, weak temperature–phase dependencies, and frequent occurrences of supercooled water. Differences in microphysics are found between mixed-phase and single-phase clouds for both ice and liquid. The Eureka results are compared with those obtained using a similar retrieval technique during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment.

Corresponding author address: Christopher J. Cox, University of Idaho Geography Dept., McClure Hall 305B, Moscow, ID 83843. E-mail: ccox@vandals.uidaho.edu
Save
  • Antonelli, P., and Coauthors, 2004: A principal component noise filter for high spectral resolution infrared measurements. J. Geophys. Res., 109, D23102, doi:10.1029/2004JD004862.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and Coauthors, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 8386.

  • Bourdages, L., T. J. Duck, G. Lesins, J. R. Drummond, and E. W. Eloranta, 2009: Physical properties of high Arctic tropospheric particles during winter. Atmos. Chem. Phys., 9, 68816897.

    • Search Google Scholar
    • Export Citation
  • Cesana, G., J. E. Kay, H. Chepfer, J. M. English, and G. de Boer, 2012: Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP. Geophys. Res. Lett., 39, L20804, doi:10.1029/2012GL053385.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and M. J. Iacono, 1995: Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons. J. Geophys. Res., 100 (D8), 16 51916 535.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97 (D14), 15 76115 785.

    • Search Google Scholar
    • Export Citation
  • Conway, T. J., P. M. Lang, and K. A. Masarie, cited 2011: Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1968–2010. [Available online at ftp://ftp.cmdl.noaa.gov/ccg/co2/flask/month/.]

  • Cox, C. J., V. P. Walden, and P. M. Rowe, 2012: A comparison of atmospheric conditions at Eureka, Canada, and Barrow, Alaska (2006–2008). J. Geophys. Res.,117, D12204, doi:10.1029/2011JD017164.

  • Curry, J. A., and E. E. Ebert, 1992: Annual cycle of radiation fluxes over the Arctic Ocean: Sensitivity to cloud optical properties. J. Climate,5, 1267–1280.

  • Curry, J. A., W. B. Rossow, R. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud radiation characteristics. J. Climate,9, 1731–1764.

  • de Boer, G., G. J. Tripoli, and E. W. Eloranta, 2008: Preliminary comparison of CloudSAT-derived microphysical quantities with ground-based measurements for mixed-phase cloud research in the Arctic. J. Geophys. Res., 113, D00A06, doi:10.1029/2008JD010029.

    • Search Google Scholar
    • Export Citation
  • de Boer, G., E. W. Eloranta, and M. D. Shupe, 2009: Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations. J. Atmos. Sci., 66, 28742887.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and G. G. Mace, 2003: Arctic stratus cloud properties and radiative forcing derived from ground-based data collected at Barrow, Alaska. J. Climate, 16, 445461.

    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 5368.

  • Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97 (D4), 38313836.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 2005: High spectral resolution lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, Ed., Springer-Verlag 143–163.

  • Francis, J. A., and E. Hunter, 2006: New insight into the disappearing Arctic sea ice. Eos, Trans. Amer. Geophys. Union, 87, 509511.

  • Francis, J. A., and E. Hunter, 2007: Changes in the fabric of the Arctic’s greenhouse blanket. Environ. Res. Lett.,2, 045011, doi:10.1088/1748-9326/2/4/045011.

  • Frisch, S., M. D. Shupe, I. Djalalova, G. Feingold, and M. Poellot, 2002: The retrieval of stratus cloud droplet effective radius with cloud radars. J. Atmos. Oceanic Technol., 19, 835842.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787789.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and C. Zhao, 2013: Ground-based remote sensing of thin clouds in the Arctic. Atmos. Meas. Tech., 6, 12271243.

  • Grenfell, T., and S. G. Warren, 1999: Representation of nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res., 104, 31 69731 709.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus: Part II: Transition-season clouds. Atmos. Res., 51, 4575.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107 (C10), 8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and Coauthors, 2012: The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 14, 20542068.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: Atmospheric emitted radiance interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric emitted radiance interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, and C. G. Schmitt, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106 (D14), 14 98915 014.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., and B. M. Lesht, 1996: Measurements of integrated water vapor and cloud liquid water from Microwave Radiometers at the DOE ARM Cloud and Radiation Testbed in the U.S. Southern Great Plains. Proc. IGARSS 1996, Lincoln, NE, IEEE, 1675–1677.

  • Liu, X., and Coauthors, 2011: Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations. J. Geophys. Res., 116, D00T11, doi:10.1029/2011JD015889.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., and A. S. Simpson, 1997: Measurement of surface radiation fluxes and cloud optical properties during the 1994 Arctic Ocean Experiment. J. Geophys. Res., 102 (D4), 42754286.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., and A. M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic. Nature, 439, 453456.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., M. D. Shupe, A. J. Heymsfield, and P. Zuidema, 2003: Ice cloud optical thickness and extinction estimates from radar measurements. J. Appl. Meteor., 42, 15841597.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, 1972: Optical properties of the atmosphere. 3rd ed. Tech. Rep. AFCRL-72-0497, Air Force Geophysical Laboratories, 108 pp.

  • McFarquhar, G. M., and Coauthors, 2011: Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, J. A. Pinto, and J. A. Curry, 2005: Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of Arctic mixed-phase clouds. Geophys. Res. Lett., 32, L18801, doi:10.1029/2005GL023614.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. Wang, and S. Salo, 2008: The recent Arctic warm period. Tellus, 60A, 589597.

  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartman, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763.

    • Search Google Scholar
    • Export Citation
  • Rathke, C., J. Fischer, S. Neshyba, and M. Shupe, 2002a: Improving IR cloud phase determination with 20 microns spectral observations. Geophys. Res. Lett.,29,doi:10.1029/2001GL04594.

  • Rathke, C., S. Neshyba, M. D. Shupe, P. Rowe, and A. Rivers, 2002b: Radiative and microphysical properties of Arctic stratus clouds from multiangle downwelling infrared radiances. J. Geophys. Res., 107, 4703, doi:10.1029/2001JD001545.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., T. Van Hove, J. Johnson, F. Solheim, and R. Ware, 1995: GPS/STORM—GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Technol., 12, 486478.

    • Search Google Scholar
    • Export Citation
  • Romanovsky, V. E., S. L. Smith, and H. H. Christiansen, 2010: Permafrost thermal state in the polar Northern Hemisphere during the International Polar Year 2007–2009: A synthesis. Permafrost Periglacial Processes, 21, 106116.

    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 2005: The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 96, 139204.

    • Search Google Scholar
    • Export Citation
  • Rowe, P. M., L. M. Miloshevich, D. D. Turner, and V. P. Walden, 2008: Dry bias in Vaisala RS90 radiosonde humidity profiles over Antarctica. J. Atmos. Oceanic Technol., 25, 15291541.

    • Search Google Scholar
    • Export Citation
  • Schofield, R., and Coauthors, 2007: Retrieval of effective radius and liquid water path from ground-based instruments: A case study at Barrow, Alaska. J. Geophys. Res., 112, D21203, doi:10.1029/2007JD008737.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, doi:10.1029/2007GL031008.

  • Shupe, M. D., 2011: Clouds at Arctic atmospheric observatories. Part II: Phase characteristics. J. Appl. Meteor. Climatol., 50, 645661.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, and S. Y. Matrosov, 2005: Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteor., 44, 15441562.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2008: A focus on mixed-phase clouds: The status of ground-based observations. Bull. Amer. Meteor. Soc., 89, 15491562.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., V. P. Walden, E. Eloranta, T. Uttal, J. R. Campbell, S. M. Startweather, and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644.

    • Search Google Scholar
    • Export Citation
  • Sirios, A., and L. A. Barrie, 1999: Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995. J. Geophys. Res., 104, 11 59911 618.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., and Coauthors, 2007: Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 19–92.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509.

    • Search Google Scholar
    • Export Citation
  • Stramler, K., A. D. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 17471762.

  • Sun, Z., and K. Shine, 1994: Studies of the radiative properties of ice and mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 120, 111137.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2003: Microphysical properties of single and mixed-phase Arctic clouds derived from ground-based AERI observations. Ph.D. thesis, University of Wisconsin—Madison, 167 pp. [Available online at http://www.ssec.wisc.edu/library/turnerdissertation.pdf.]

  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427443.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2007: Improved ground-based liquid water path retrievals using combined infrared and microwave approach. J. Geophys. Res., 112, D15204, doi:10.1029/2007/JD008530.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and E. W. Eloranta, 2008: Validating mixed-phase cloud optical depth retrieved from infrared observations with high spectral resolution lidar. IEEE Geosci. Remote Sens. Lett., 5, 285288.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., B. M. Lesht, S. A. Clough, J. C. Liljegren, H. E. Revercomb, and D. C. Tobin, 2003: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Oceanic Technol.,20, 117–132.

  • Turner, D. D., R. O. Knuteson, H. E. Revercomb, C. Lo, and R. G. Dedecker, 2006: Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis. J. Atmos. Oceanic Technol., 23, 12231238.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152.

  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255275.

  • Vavrus, S., 2004: The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Climate,17, 603–615.

  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205221.

  • Vogelmann, A. M., and Coauthors, 2012: RACORO extended-term aircraft observations of boundary layer clouds. Bull. Amer. Meteor. Soc., 93, 861878.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2009: A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36, L0752, doi:10.1029/2009GL037820.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. R. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder Dataset: Part II: Recent trends. J. Climate, 18, 25752593.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., K. Sassen, D. N. Whiteman, and B. B. Demoz, 2004: Studying altocumulus with ice virga using ground-based active and passive remote sensors. J. Appl. Meteor., 43, 449460.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2012: Toward understanding of differences in current cloud retrievals of ARM ground-based measurements. J. Geophys. Res., 117, D10206, doi:10.1029/2011JD016792.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2428 1838 93
PDF Downloads 326 62 10