Information Content and Uncertainties in Thermodynamic Profiles and Liquid Cloud Properties Retrieved from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI)

D. D. Turner NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by D. D. Turner in
Current site
Google Scholar
PubMed
Close
and
U. Löhnert Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by U. Löhnert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Atmospheric Emitted Radiance Interferometer (AERI) observes spectrally resolved downwelling radiance emitted by the atmosphere in the infrared portion of the electromagnetic spectrum. Profiles of temperature and water vapor, and cloud liquid water path and effective radius for a single liquid cloud layer, are retrieved using an optimal estimation–based physical retrieval algorithm from AERI-observed radiance data. This algorithm provides a full error covariance matrix for the solution, and both the degrees of freedom for signal and the Shannon information content. The algorithm is evaluated with both synthetic and real AERI observations. The AERI is shown to have approximately 85% and 70% of its information in the lowest 2 km of the atmosphere for temperature and water vapor profiles, respectively. In clear-sky situations, the mean bias errors with respect to the radiosonde profiles are less than 0.2 K and 0.3 g kg−1 for heights below 2 km for temperature and water vapor mixing ratio, respectively; the maximum root-mean-square errors are less than 1 K and 0.8 g kg−1. The errors in the retrieved profiles in cloudy situations are larger, due in part to the scattering contribution to the downwelling radiance that was not accounted for in the forward model. Scattering is largest in one of the spectral regions used in the retrieval, however, and removing this spectral region results in a slight reduction of the information content but a considerable improvement in the accuracy of the retrieved thermodynamic profiles.

Corresponding author address: Dr. David Turner, NOAA/National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: dave.turner@noaa.gov

Abstract

The Atmospheric Emitted Radiance Interferometer (AERI) observes spectrally resolved downwelling radiance emitted by the atmosphere in the infrared portion of the electromagnetic spectrum. Profiles of temperature and water vapor, and cloud liquid water path and effective radius for a single liquid cloud layer, are retrieved using an optimal estimation–based physical retrieval algorithm from AERI-observed radiance data. This algorithm provides a full error covariance matrix for the solution, and both the degrees of freedom for signal and the Shannon information content. The algorithm is evaluated with both synthetic and real AERI observations. The AERI is shown to have approximately 85% and 70% of its information in the lowest 2 km of the atmosphere for temperature and water vapor profiles, respectively. In clear-sky situations, the mean bias errors with respect to the radiosonde profiles are less than 0.2 K and 0.3 g kg−1 for heights below 2 km for temperature and water vapor mixing ratio, respectively; the maximum root-mean-square errors are less than 1 K and 0.8 g kg−1. The errors in the retrieved profiles in cloudy situations are larger, due in part to the scattering contribution to the downwelling radiance that was not accounted for in the forward model. Scattering is largest in one of the spectral regions used in the retrieval, however, and removing this spectral region results in a slight reduction of the information content but a considerable improvement in the accuracy of the retrieved thermodynamic profiles.

Corresponding author address: Dr. David Turner, NOAA/National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: dave.turner@noaa.gov
Save
  • Antonelli, P., and Coauthors, 2005: A principal component noise filter for high spectral resolution infrared measurements. J. Geophys. Res., 109, D23102, doi:10.1029/2004JD004862.

    • Search Google Scholar
    • Export Citation
  • Carissimo, A., I. De Feis, and C. Serio, 2005: The physical retrieval methodology for IASI: The δ-IASI code. Environ. Model. Software, 20, 11111126.

    • Search Google Scholar
    • Export Citation
  • Cimini, D., and Coauthors, 2011: Thermodynamic atmospheric profiling during the 2010 Winter Olympics using ground-based microwave radiometry. IEEE Trans. Geosci. Remote Sens., 49, 49594969.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and M. J. Iacono, 1995: Line-by-line calculations of atmospheric fluxes and cooling rates. 2: Application to carbon dioxide, ozone, methane, nitrous oxide, and halocarbons. J. Geophys. Res., 100, 16 51916 535.

    • Search Google Scholar
    • Export Citation
  • Committee on Developing Mesoscale Meteorological Observational Capabilities to Meet Multiple National Needs, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 234 pp.

  • Committee on Progress and Priorities of U.S. Weather Research and Research-to-Operations Activities, 2010: When Weather Matters: Science and Service to Meet Critical Societal Needs, National Academies Press, 182 pp.

  • Di Girolamo, P., R. Marchese, D. N. Whiteman, and B. Demoz, 2004: Rotational Raman lidar measurements of atmospheric temperature in the UV. Geophys. Res. Lett., 31, L01106, doi:10.1029/2003GL018342.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., and J. R. Mecikalski, 2002: Monitoring high-temporal-resolution convective stability indices using the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma–Kansas tornado outbreak. Wea. Forecasting, 17, 445455.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 1998: Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 37, 857875.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., W. L. Smith, H. B. Howell, R. O. Knuteson, H. Woolf, and H. E. Revercomb, 2003: Near-continuous profiling of temperature, moisture, and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42, 584597.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., F. H. Blair, S. E. Bisson, and D. D. Turner, 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990.

    • Search Google Scholar
    • Export Citation
  • Hansen, C., 1992: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 34, 561580.

  • Hewison, T. J., 2007: 1D-VAR retrieval of temperature and humidity profiles from a ground-based microwave radiometer. IEEE Trans. Geosci. Remote Sens., 45, 21632168.

    • Search Google Scholar
    • Export Citation
  • Hoff, R. M., and R. M. Hardesty, Eds., 2012: Thermodynamic Profiling Technologies Workshop Report to the National Science Foundation and the National Weather Service. NCAR Tech. Note NCAR/TN-488+STR, 80 pp.

  • Holz, R. E., S. A. Ackerman, P. Antonelli, F. Nagle, R. O. Knuteson, M. McGill, D. L. Hlavka, and W. D. Hart, 2006: An improvement to the high-spectral-resolution CO2-slicing cloud-top altitude retrieval. J. Atmos. Oceanic Technol., 23, 653670.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: The Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: The Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., S. Crewell, and C. Simmer, 2004: An integrated approach toward retrieving physically consistent profiles of temperature, humidity, and cloud liquid water. J. Appl. Meteor., 43, 12951307.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., D. D. Turner, and S. Crewell, 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear sky conditions. J. Appl. Meteor. Climatol., 48, 10171032.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young, 1998: Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data. J. Geophys. Res., 103, 23 20723 216.

    • Search Google Scholar
    • Export Citation
  • Masiello, G., C. Serio, and P. Antonelli, 2012: Inversion for atmospheric thermodynamical parameters of IASI data in the principal components space. Quart. J. Roy. Meteor. Soc., 138, 103117.

    • Search Google Scholar
    • Export Citation
  • Merrelli, A. M., and D. D. Turner, 2012: Comparing information content of upwelling far infrared and midinfrared radiance spectra for clear atmosphere profiling. J. Atmos. Oceanic Technol., 29, 510526.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., and Coauthors, 2010: Thermodynamic phase profiles of optically thin midlatitude clouds and their relation to temperature. J. Geophys. Res., 115, D11202, doi:10.1029/2009JD012889.

    • Search Google Scholar
    • Export Citation
  • Nehrir, A. R., K. S. Repasky, and J. L. Carlsten, 2011: Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere. J. Atmos. Oceanic Technol., 28, 131147.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., D. D. Turner, and J. E. M. Goldsmith, 2013: Long-term evaluation of temperature profiles measured by an operational Raman lidar. J. Atmos. Oceanic Technol., 30, 16161634.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific, 238 pp.

  • Smith, W. L., W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 1999: The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements. J. Atmos. Oceanic Technol., 16, 323333.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Testbed. Bull. Amer. Meteor. Soc., 75, 12011221.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192.

  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2007: Improved ground-based liquid water path retrievals using a combined infrared and microwave approach. J. Geophys. Res., 112, D15204, doi:10.1029/2007JD008530.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., W. F. Feltz, and R. A. Ferrare, 2000: Continuous water profiles from operational ground-based active and passive remote sensors. Bull. Amer. Meteor. Soc., 81, 13011317.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, 2003: Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor., 42, 701715.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. O. Knuteson, H. E. Revercomb, C. Lo, and R. G. Dedecker, 2006: Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis. J. Atmos. Oceanic Technol., 23, 12231238.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2007a: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc., 88, 177190.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. Cady-Pereira, and K. L. Gaustad, 2007b: Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690.

    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., W. F. Feltz, and S. A. Ackerman, 2008: The temporal evolution of convective indices in storm-producing environments. Wea. Forecasting, 23, 786794.

    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., D. D. Turner, L. K. Berg, and S. K. Kruger, 2013: Ground-based remote retrievals of cumulus entrainment rates. J. Atmos. Oceanic Technol., 30, 14601471.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2006: Raman lidar measurements during the International H2O Project. Part I: Instrumentation and analysis techniques. J. Atmos. Oceanic Technol., 23, 157169.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and J. Bösenberg, 1998: Ground-based differential absorption lidar for water-vapor profiling: Assessment of accuracy, resolution, and meteorological applications. Appl. Opt., 37, 38253844.

    • Search Google Scholar
    • Export Citation
  • Wunch, D., and Coauthors, 2011: The Total Carbon Column Observing Network. Philos. Trans. Roy. Soc., 369A, 20872112.

  • Zhou, D. K., W. L. Smith Sr., X. Liu, A. M. Larar, S. A. Mango, and H.-L. Huang, 2007: Physically retrieving cloud and thermodynamic parameters from ultraspectral IR measurements. J. Atmos. Sci., 64, 969982.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2369 1193 29
PDF Downloads 1248 338 20