Application of Statistical Models to the Prediction of Seasonal Rainfall Anomalies over the Sahel

Hamada S. Badr Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Hamada S. Badr in
Current site
Google Scholar
PubMed
Close
,
Benjamin F. Zaitchik Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Benjamin F. Zaitchik in
Current site
Google Scholar
PubMed
Close
, and
Seth D. Guikema Department of Geography and Environmental Engineering, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Seth D. Guikema in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rainfall in the Sahel region of Africa is prone to large interannual variability, and it has exhibited a recent multidecadal drying trend. The well-documented social impacts of this variability have motivated numerous efforts at seasonal precipitation prediction, many of which employ statistical techniques that forecast Sahelian precipitation as a function of large-scale indices of surface air temperature (SAT) anomalies, sea surface temperature (SST), surface pressure, and other variables. These statistical models have demonstrated some skill, but nearly all have adopted conventional statistical modeling techniques—most commonly generalized linear models—to associate predictor fields with precipitation anomalies. Here, the results of an artificial neural network (ANN) machine-learning algorithm applied to predict summertime (July–September) Sahel rainfall anomalies using indices of springtime (April–June) SST and SAT anomalies for the period 1900–2011 are presented. Principal component analysis was used to remove multicollinearity between predictor variables. Predictive accuracy was assessed using repeated k-fold random holdout and leave-one-out cross-validation methods. It was found that the ANN achieved predictive accuracy superior to that of eight alternative statistical methods tested in this study, and it was also superior to that of previously published predictive models of summertime Sahel precipitation. Analysis of partial dependence plots indicates that ANN skill is derived primarily from the ability to capture nonlinear influences that multiple major modes of large-scale variability have on Sahelian precipitation. These results point to the value of ANN techniques for seasonal precipitation prediction in the Sahel.

Denotes Open Access content.

Corresponding author address: Hamada Badr, The Johns Hopkins University, Olin Hall, 3400 N. Charles St., Baltimore, MD 21218. E-mail: badr@jhu.edu

Abstract

Rainfall in the Sahel region of Africa is prone to large interannual variability, and it has exhibited a recent multidecadal drying trend. The well-documented social impacts of this variability have motivated numerous efforts at seasonal precipitation prediction, many of which employ statistical techniques that forecast Sahelian precipitation as a function of large-scale indices of surface air temperature (SAT) anomalies, sea surface temperature (SST), surface pressure, and other variables. These statistical models have demonstrated some skill, but nearly all have adopted conventional statistical modeling techniques—most commonly generalized linear models—to associate predictor fields with precipitation anomalies. Here, the results of an artificial neural network (ANN) machine-learning algorithm applied to predict summertime (July–September) Sahel rainfall anomalies using indices of springtime (April–June) SST and SAT anomalies for the period 1900–2011 are presented. Principal component analysis was used to remove multicollinearity between predictor variables. Predictive accuracy was assessed using repeated k-fold random holdout and leave-one-out cross-validation methods. It was found that the ANN achieved predictive accuracy superior to that of eight alternative statistical methods tested in this study, and it was also superior to that of previously published predictive models of summertime Sahel precipitation. Analysis of partial dependence plots indicates that ANN skill is derived primarily from the ability to capture nonlinear influences that multiple major modes of large-scale variability have on Sahelian precipitation. These results point to the value of ANN techniques for seasonal precipitation prediction in the Sahel.

Denotes Open Access content.

Corresponding author address: Hamada Badr, The Johns Hopkins University, Olin Hall, 3400 N. Charles St., Baltimore, MD 21218. E-mail: badr@jhu.edu
Save
  • Arlot, S., and A. Celisse, 2010: A survey of cross-validation procedures for model selection. Stat. Surv., 4, 4079, doi:10.1214/09-SS054.

    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B,289300.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., I. Held, A. Sobel, and A. Giannini, 2008: SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J. Climate, 21, 34713486, doi:10.1175/2007JCLI1896.1.

    • Search Google Scholar
    • Export Citation
  • Breiman, L., 1984: Classification and Regression Trees. Chapman & Hall/CRC, 358 pp.

  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, doi:10.1023/A:1010933404324.

  • Brooks, N., 2004: Drought in the African Sahel: Long-term perspectives and future prospects. Tyndall Working Paper 61, Tyndall Climate Centre for Climate Change Research, 31 pp. [Available online at www.tyndall.ac.uk.]

  • Cameron, A. C., and P. K. Trivedi, 1998: Regression Analysis of Count Data. Econometric Society Monogr., Vol. 30, Cambridge University Press, 436 pp.

    • Search Google Scholar
    • Export Citation
  • Chipman, H. A., E. I. George, and R. E. McCulloch, 2010: BART: Bayesian additive regression trees. Ann. Appl. Stat., 4, 266298, doi:10.1214/09-AOAS285.

    • Search Google Scholar
    • Export Citation
  • Collier, R., 1994: An historical overview of natural language processing systems that learn. Artif. Intell. Rev., 8, 1754, doi:10.1007/BF00851349.

    • Search Google Scholar
    • Export Citation
  • Dezfuli, A. K., and S. E. Nicholson, 2011: A note on long-term variations of the African easterly jet. Int. J. Climatol., 31, 20492054, doi:10.1002/joc.2209.

    • Search Google Scholar
    • Export Citation
  • Farrar, D. E., and R. R. Glauber, 1967: Multicollinearity in regression analysis: The problem revisited. Rev. Econ. Stat., 49, 92107, doi:10.2307/1937887.

    • Search Google Scholar
    • Export Citation
  • Folland, C., J. Owen, M. N. Ward, and A. Colman, 1991: Prediction of seasonal rainfall in the Sahel region using empirical and dynamical methods. J. Forecast., 10, 2156, doi:10.1002/for.3980100104.

    • Search Google Scholar
    • Export Citation
  • Fontaine, B., and N. Philippon, 2000: Seasonal evolution of boundary layer heat content in the West African monsoon from the NCEP/NCAR reanalysis (1968–1998). Int. J. Climatol., 20, 17771790, doi:10.1002/1097-0088(20001130)20:14<1777::AID-JOC568>3.0.CO;2-S.

    • Search Google Scholar
    • Export Citation
  • Fontaine, B., N. Philippon, and P. Camberlin, 1999: An improvement of June–September rainfall forecasting in the Sahel based upon region April–May moist static energy content. Geophys. Res. Lett., 26, 20412044, doi:10.1029/1999GL900495.

    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., 1991: Multivariate adaptive regression splines. Ann. Stat., 19,167, doi:10.1214/aos/1176347963.

  • Garric, G., H. Douville, and M. Deque, 2002: Prospects for improved seasonal predictions of monsoon precipitation over Sahel. Int. J. Climatol., 22, 331345, doi:10.1002/joc.736.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, doi:10.1126/science.1089357.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., M. Biasutti, I. M. Held, and A. H. Sobel, 2008: A global perspective on African climate. Climatic Change, 90, 359383, doi:10.1007/s10584-008-9396-y.

    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and S. E. Nicholson, 2001: A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J. Climate, 14, 13371359, doi:10.1175/1520-0442(2001)014<1337:ASOTDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., and R. Tibshirani, 1986: Generalized additive models. Stat. Sci., 1, 297318.

  • Hastie, T., R. Tibshirani, and J. Friedman, 2009: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer Series in Statistics, Springer-Verlag, 793 pp.

  • Haywood, J. M., A. Jones, N. Bellouin, and D. Stephenson, 2013: Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Climate Change, 3, 660–665, doi:10.1038/nclimate1857.

    • Search Google Scholar
    • Export Citation
  • Heiberger, R. M., cited 2013: Statistical analysis and data display: Heiberger and Holland. R package version 2.3-42, R Project for Statistical Computing. [Available online at http://www.r-project.org/.]

  • Herceg, D., A. H. Sobel, and L. Sun, 2007: Regional modeling of decadal rainfall variability over the Sahel. Climate Dyn., 29, 8999, doi:10.1007/s00382-006-0218-5.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Hurrell, J. Eischeid, and A. Phillips, 2006: Detection and attribution of twentieth-century northern and southern African rainfall change. J. Climate, 19, 39894008, doi:10.1175/JCLI3842.1.

    • Search Google Scholar
    • Export Citation
  • Hothorn, T., K. Hornik, C. Strobl, and A. Zeileis, 2010: Party: A laboratory for recursive partytioning. R Project for Statistical Computing, 18 pp. [Available online at cran.r-project.org/web/packages/party/vignettes/party.pdf.]

  • Hulme, M., 2001: Climatic perspectives on Sahelian desiccation: 1973–1998. Global Environ. Change, 11, 1929, doi:10.1016/S0959-3780(00)00042-X.

    • Search Google Scholar
    • Export Citation
  • Hyndman, R. J., and A. B. Koehler, 2006: Another look at measures of forecast accuracy. Int. J. Forecast., 22, 679688, doi:10.1016/j.ijforecast.2006.03.001.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., 1988: An investigation of interannual rainfall variability in Africa. J. Climate, 1, 240255, doi:10.1175/1520-0442(1988)001<0240:AIOIRV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kandji, S., L. Verchot, and J. Mackensen, 2006: Climate change and variability in southern Africa: Impacts and adaptation in the agricultural sector. UNEP and ICRAF, 36 pp. [Available online at http://www.unep.org/themes/freshwater/documents/climate_change_and_variability_in_the_southern_africa.pdf.]

  • Kuhn, M., 2008: Building predictive models in R using the caret package. J. Stat. Software, 28, 126.

  • Lu, J., 2009: The dynamics of the Indian Ocean sea surface temperature forcing of Sahel drought. Climate Dyn., 33, 445460.

  • Lu, J., and T. L. Delworth, 2005: Oceanic forcing of the late 20th century Sahel drought. Geophys. Res. Lett., 32, L22706, doi:10.1029/2005GL023316.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., A. J. Ash, and M. S. Smith, 2005: From oceans to farms: The value of a novel statistical climate forecast for agricultural management. J. Climate, 18, 42874302, doi:10.1175/JCLI3515.1.

    • Search Google Scholar
    • Export Citation
  • Ndiaye, O., L. Goddard, and M. N. Ward, 2009: Using regional wind fields to improve general circulation model forecasts of July–September Sahel rainfall. Int. J. Climatol., 29, 12621275, doi:10.1002/joc.1767.

    • Search Google Scholar
    • Export Citation
  • Ndiaye, O., M. N. Ward, and W. M. Thiaw, 2011: Predictability of seasonal Sahel rainfall using GCMs and lead-time improvements through the use of a coupled model. J. Climate, 24, 19311949, doi:10.1175/2010JCLI3557.1.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. W. M. Wedderburn, 1972: Generalized linear models. J. Roy. Stat. Soc., 135A,370384.

  • Neupane, N., and K. H. Cook, 2013: A nonlinear response of Sahel rainfall to Atlantic warming. J. Climate, 26, 7080–7096, doi:10.1175/JCLI-D-12-00475.1.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 1995: Sahel, West Africa. Encycl. Environ. Biol.,3, 261–275.

  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor.,2013, 453521, doi:10.1155/2013/453521.

  • Nicholson, S. E., and J. Selato, 2000: The influence of La Niña on African rainfall. Int. J. Climatol., 20, 17611776, doi:10.1002/1097-0088(20001130)20:14<1761::AID-JOC580>3.0.CO;2-W.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., A. K. Dezfuli, and D. Klotter, 2012: A two-century precipitation dataset for the continent of Africa. Bull. Amer. Meteor. Soc., 93, 12191231, doi:10.1175/BAMS-D-11-00212.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., 1986: Influence of the Atlantic, Pacific and Indian Oceans on Sahel rainfall. Nature,322, 251–253, doi:10.1038/322251a0.

  • Peters, A., T. Hothorn, and B. Lausen, 2002: Ipred: Improved predictors. R news,2, 33–36.

  • Ripley, B., cited 2013: Classification and regression trees. R package version 1.0-34, R Project for Statistical Computing. [Available online at http://www.r-project.org/.]

  • Rowell, D. P., 2001: Teleconnections between the tropical Pacific and the Sahel. Quart. J. Roy. Meteor. Soc., 127A, 16831706, doi:10.1002/qj.49712757512.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2003: The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Climate, 16, 849862, doi:10.1175/1520-0442(2003)016<0849:TIOMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., C. K. Folland, K. Maskell, and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906-92): Observations and modelling. Quart. J. Roy. Meteor. Soc., 121, 669704, doi:10.1002/qj.49712152311.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Sutton, C. D., 2005: Classification and regression trees, bagging, and boosting. Handbook Stat.,24, 303–329.

  • Venables, W. N., B. D. Ripley, and W. Venables, 1994: Modern Applied Statistics with S-PLUS. Series on Statistics and Computing, Vol. 250, Springer-Verlag, 462 pp.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2002: Development and application of a mesoscale climate model for the tropics: Influence of sea surface temperature anomalies on the West African monsoon. J. Geophys. Res., 107, 4023, doi:10.1029/2001JD000686.

    • Search Google Scholar
    • Export Citation
  • Von Storch, H., 1999: Misuses of statistical analysis in climate research. Analysis of Climate Variability, H. Von Storch and A. Navarra, Eds., Series on Applications of Statistical Techniques, 2nd ed., Springer-Verlag, 11–26.

  • Von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wood, S. N., 2001: Mgcv: GAMs and generalized ridge regression for R. R news,1, 20–25.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2816 1485 91
PDF Downloads 1158 158 33