Severe-Thunderstorm Reanalysis Environments and Collocated Radiosonde Observations

Victor A. Gensini College of DuPage, Glen Ellyn, Illinois

Search for other papers by Victor A. Gensini in
Current site
Google Scholar
PubMed
Close
,
Thomas L. Mote University of Georgia, Athens, Georgia

Search for other papers by Thomas L. Mote in
Current site
Google Scholar
PubMed
Close
, and
Harold E. Brooks National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Harold E. Brooks in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This research compares reanalysis-derived proxy soundings from the North American Regional Reanalysis (NARR) with collocated observed radiosonde data across the central and eastern United States during the period 2000–11: 23 important parameters used for forecasting severe convection are examined. Kinematic variables such as 0–6-km bulk wind shear are best represented by this reanalysis, whereas thermodynamic variables such as convective available potential energy exhibit regional biases and are generally overestimated by the reanalysis. For thermodynamic parameters, parcel-ascent choice is an important consideration because of large differences in reanalysis low-level moisture fields versus observed ones. Results herein provide researchers with potential strengths and limitations of using NARR data for the purposes of depicting climatological information for hazardous convective weather and initializing model simulations. Similar studies should be considered for other reanalysis datasets.

Corresponding author address: Vittorio A. Gensini, Dept. of Meteorology, College of DuPage, 425 Fawell Blvd., Glen Ellyn, IL 60137. E-mail: gensiniv@cod.edu

Abstract

This research compares reanalysis-derived proxy soundings from the North American Regional Reanalysis (NARR) with collocated observed radiosonde data across the central and eastern United States during the period 2000–11: 23 important parameters used for forecasting severe convection are examined. Kinematic variables such as 0–6-km bulk wind shear are best represented by this reanalysis, whereas thermodynamic variables such as convective available potential energy exhibit regional biases and are generally overestimated by the reanalysis. For thermodynamic parameters, parcel-ascent choice is an important consideration because of large differences in reanalysis low-level moisture fields versus observed ones. Results herein provide researchers with potential strengths and limitations of using NARR data for the purposes of depicting climatological information for hazardous convective weather and initializing model simulations. Similar studies should be considered for other reanalysis datasets.

Corresponding author address: Vittorio A. Gensini, Dept. of Meteorology, College of DuPage, 425 Fawell Blvd., Glen Ellyn, IL 60137. E-mail: gensiniv@cod.edu
Save
  • Allen, J. T., and D. J. Karoly, 2014: A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence. Int. J. Climatol., 34, 8197.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., A. R. Anderson, K. Riemann, I. Ebbers, and H. Flachs, 2007: Climatological aspects of convective parameters from the NCAR/NCEP reanalysis. Atmos. Res., 83, 294305.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., H. E. Brooks, and J. A. Hart, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 619623.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and W. S. Ashley, 2011: Climatology of potentially severe convective environments from the North American Regional Reanalysis. Electron. J. Severe Storms Meteor., 6. [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/view/85/68.]

    • Search Google Scholar
    • Export Citation
  • Hunter, J. D., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9 (3), 9095.

  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Lanicci, J. M., and T. T. Warner, 1991: A synoptic climatology of the elevated mixed-layer inversion over the southern Great Plains in spring. Part I: Structure, dynamics, and seasonal evolution. Wea. Forecasting, 6, 198213.

    • Search Google Scholar
    • Export Citation
  • Lee, J. W., 2002: Tornado proximity soundings from the NCEP/NCAR reanalysis data. M.S. thesis, Dept. of Meteorology, University of Oklahoma, 61 pp.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1821 878 40
PDF Downloads 892 181 10