Automatic and Probabilistic Foehn Diagnosis with a Statistical Mixture Model

David Plavcan Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria

Search for other papers by David Plavcan in
Current site
Google Scholar
PubMed
Close
,
Georg J. Mayr Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria

Search for other papers by Georg J. Mayr in
Current site
Google Scholar
PubMed
Close
, and
Achim Zeileis Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Innsbruck, Austria

Search for other papers by Achim Zeileis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Diagnosing foehn winds from weather station data downwind of topographic obstacles requires distinguishing them from other downslope winds, particularly nocturnal ones driven by radiative cooling. An automatic classification scheme to obtain reproducible results that include information about the (un)certainty of the diagnosis is presented. A statistical mixture model separates foehn and no-foehn winds in a measured time series of wind. In addition to wind speed and direction, it accommodates other physically meaningful classifiers such as the (potential) temperature difference to an upwind station (e.g., near the crest) or relative humidity. The algorithm was tested for Wipp Valley in the central Alps against human expert classification and a previous objective method (Drechsel and Mayr 2008), which the new method outperforms. Climatologically, using only wind information gives nearly identical foehn frequencies as when using additional covariables. A data record length of at least one year is required for satisfactory results. The suitability of mixture models for objective classification of foehn at other locations will have to be tested in further studies.

Corresponding author address: Georg Mayr, Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria. E-mail: georg.mayr@uibk.ac.at

Abstract

Diagnosing foehn winds from weather station data downwind of topographic obstacles requires distinguishing them from other downslope winds, particularly nocturnal ones driven by radiative cooling. An automatic classification scheme to obtain reproducible results that include information about the (un)certainty of the diagnosis is presented. A statistical mixture model separates foehn and no-foehn winds in a measured time series of wind. In addition to wind speed and direction, it accommodates other physically meaningful classifiers such as the (potential) temperature difference to an upwind station (e.g., near the crest) or relative humidity. The algorithm was tested for Wipp Valley in the central Alps against human expert classification and a previous objective method (Drechsel and Mayr 2008), which the new method outperforms. Climatologically, using only wind information gives nearly identical foehn frequencies as when using additional covariables. A data record length of at least one year is required for satisfactory results. The suitability of mixture models for objective classification of foehn at other locations will have to be tested in further studies.

Corresponding author address: Georg Mayr, Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria. E-mail: georg.mayr@uibk.ac.at
Save
  • Armi, L., and G. J. Mayr, 2011: The descending stratified flow and internal hydraulic jump in the lee of the sierras. J. Appl. Meteor. Climatol., 50, 1995–2011, doi:10.1175/JAMC-D-10-05005.1.

    • Search Google Scholar
    • Export Citation
  • Conrad, V., 1936: Die klimatologischen Elemente und ihre Abhängigkeit von terrestrischen Einflüssen. Handbuch der Klimatologie, Bornträger, 1146–1166.

  • Dayton, C. M., and G. B. Macready, 1988: Concomitant-variable latent-class models. J. Amer. Stat. Assoc., 83, 173–178, doi:10.1080/01621459.1988.10478584.

    • Search Google Scholar
    • Export Citation
  • Defant, A., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg-und Talwinde. Arch. Meteor. Geophys. Bioklimatol., 1, 421–450, doi:10.1007/BF02247634.

    • Search Google Scholar
    • Export Citation
  • Drechsel, S., and G. J. Mayr, 2008: Objective forecasting of foehn winds for a subgrid-scale alpine valley. Wea. Forecasting, 23, 205–218, doi:10.1175/2007WAF2006021.1.

    • Search Google Scholar
    • Export Citation
  • Dürr, B., 2008: Automatisiertes Verfahren zur Bestimmung von Föhn in Alpentälern. Arbeitsbericht 223, MeteoSchweiz, 22 pp. [Available online at http://www.meteoschweiz.admin.ch/web/de/forschung/publikationen/alle_publikationen/ab_223.html.]

  • Gaffin, D. M., 2002: Unexpected warming induced by foehn winds in the lee of the Smoky Mountains. Wea. Forecasting, 17, 907–915, doi:10.1175/1520-0434(2002)017<0907:UWIBFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaffin, D. M., 2007: Foehn winds that produced large temperature differences near the southern Appalachian Mountains. Wea. Forecasting, 22, 145–159, doi:10.1175/WAF970.1.

    • Search Google Scholar
    • Export Citation
  • Grün, B., and F. Leisch, 2008: FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. J. Stat. Softw., 28 (4), 1–34. [Available online at http://www.jstatsoft.org/v28/i04/.]

    • Search Google Scholar
    • Export Citation
  • Gutermann, T., 1970: Vergleichende Untersuchungen zur Fönhäufigkeit im Rheintal zwischen Chur und Bodensee. Institut Suisse de Météorologie, Schweiz Meteor. Zentralanst. 18, 68 pp. [Available online at http://www.meteoschweiz.admin.ch/web/de/forschung/publikationen/alle_publikationen/vergleichende_untersuchungen.html.]

  • Gutermann, T., B. Dürr, H. Richner, and B. Stephan, 2012: Föhnklimatologie Altdorf: Die lange Reihe (1864–2008) und ihre Weiterführung, Vergleich mit anderen Stationen. Fachbericht 241, MeteoSchweiz, 53 pp. [Available online at http://www.meteoschweiz.admin.ch/web/de/forschung/publikationen/alle_publikationen/fb_241.html.]

  • Hastie, T., R. Tibshirani, and J. Friedman, 2009: The Elements of Statistical Learning.2nd ed. Springer, 524 pp.

  • Jackson, P., G. J. Mayr, and S. Vosper, 2013: Dynamically-driven winds. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges,Springer, 121–218.

  • Leisch, F., 2004: FlexMix: A general framework for finite mixture models and latent class regression in R. J. Stat. Softw., 11 (8), 1–18. [Available online at http://www.jstatsoft.org/v11/i08/.]

    • Search Google Scholar
    • Export Citation
  • Mayr, G. J., and L. Armi, 2008: Föhn as a response to changing upstream and downstream air masses. Quart. J. Roy. Meteor. Soc., 134, 1357–1369, doi:10.1002/qj.295.

    • Search Google Scholar
    • Export Citation
  • Mayr, G. J., and L. Armi, 2010: The influence of downstream diurnal heating on the descent of flow across the Sierras. J. Appl. Meteor. Climatol., 49, 1906–1912, doi:10.1175/2010JAMC2516.1.

    • Search Google Scholar
    • Export Citation
  • Mayr, G. J., and Coauthors, 2007: Gap flows: Results from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 881–896, doi:10.1002/qj.66.

    • Search Google Scholar
    • Export Citation
  • McLachlan, G. J., and D. Peel, 2000: Finite Mixture Models.Wiley, 456 pp.

  • Pelletier, J. D., 2013: A robust, two-parameter method for the extraction of drainage networks from high-resolution digital elevation models (DEMs): Evaluation using synthetic and real-world DEMs. Water Resour. Res., 49, 75–89, doi:10.1029/2012WR012452.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1944: Führer durch die Strömungslehre. 2nd ed. Friedrich Vieweg & Sohn, 384 pp.

  • Vergeiner, J., 2004: South foehn studies and a new foehn classification scheme in the Wipp and Inn valley. Ph.D. thesis, University of Innsbruck, 111 pp.

  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications.Oxford University Press, 376 pp.

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 704 pp.

  • WMO, 1992: International Meteorological Vocabulary. 2nd ed. World Meteorological Organization, 784 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1786 967 26
PDF Downloads 756 125 7