Evaluation of Modeling Water-Vapor-Weighted Mean Tropospheric Temperature for GNSS-Integrated Water Vapor Estimates in Brazil

Luiz F. Sapucci Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Luiz F. Sapucci in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Meteorological application of Global Navigation Satellite System (GNSS) data over Brazil has increased significantly in recent years, motivated by the significant amount of investment from research agencies. Several projects have, among their principal objectives, the monitoring of humidity over Brazilian territory. These research projects require integrated water vapor (IWV) values with maximum quality, and, accordingly, appropriate data from the installed meteorological stations, together with the GNSS antennas, have been used. The model that is applied to estimate the water-vapor-weighted mean tropospheric temperature (Tm) is a source of uncertainty in the estimate of IWV values using the ground-based GNSS receivers in Brazil. Two global models and one algorithm for Tm, developed through the use of radiosondes, numerical weather prediction products, and 40-yr ECMWF Re-Analysis (ERA-40), as well as two regional models, were evaluated using a dataset of ~78 000 radiosonde profiles collected at 22 stations in Brazil during a 12-yr period (1999–2010). The regional models (denoted the Brazilian and regional models) were developed with the use of multivariate statistical analysis using ~90 000 radiosonde profiles launched at 12 stations over a 32-yr period (1961–93). The main conclusion is that the Brazilian model and two global models exhibit similar performance if the complete dataset and the entire period are taken into consideration. However, for seasonal and local variations of the Tm values, the Brazilian model was better than the other two models for most stations. The Tm values from ERA-40 present no bias, but their scatter is larger than that in the other models.

Corresponding author address: Luiz F. Sapucci, Instituto Nacional de Pesquisas Espaciais, CPTEC, Rodovia Presidente Dutra, km 40, CEP 12630, Cachoeira Paulista, São Paulo, Brazil. E-mail: luiz.sapucci@cptec.inpe.br

Abstract

Meteorological application of Global Navigation Satellite System (GNSS) data over Brazil has increased significantly in recent years, motivated by the significant amount of investment from research agencies. Several projects have, among their principal objectives, the monitoring of humidity over Brazilian territory. These research projects require integrated water vapor (IWV) values with maximum quality, and, accordingly, appropriate data from the installed meteorological stations, together with the GNSS antennas, have been used. The model that is applied to estimate the water-vapor-weighted mean tropospheric temperature (Tm) is a source of uncertainty in the estimate of IWV values using the ground-based GNSS receivers in Brazil. Two global models and one algorithm for Tm, developed through the use of radiosondes, numerical weather prediction products, and 40-yr ECMWF Re-Analysis (ERA-40), as well as two regional models, were evaluated using a dataset of ~78 000 radiosonde profiles collected at 22 stations in Brazil during a 12-yr period (1999–2010). The regional models (denoted the Brazilian and regional models) were developed with the use of multivariate statistical analysis using ~90 000 radiosonde profiles launched at 12 stations over a 32-yr period (1961–93). The main conclusion is that the Brazilian model and two global models exhibit similar performance if the complete dataset and the entire period are taken into consideration. However, for seasonal and local variations of the Tm values, the Brazilian model was better than the other two models for most stations. The Tm values from ERA-40 present no bias, but their scatter is larger than that in the other models.

Corresponding author address: Luiz F. Sapucci, Instituto Nacional de Pesquisas Espaciais, CPTEC, Rodovia Presidente Dutra, km 40, CEP 12630, Cachoeira Paulista, São Paulo, Brazil. E-mail: luiz.sapucci@cptec.inpe.br
Save
  • Adams, D. K., and Coauthors, 2011: A dense GNSS meteorological network for observing deep convection in the Amazon. Atmos. Sci. Lett., 12, 207212.

    • Search Google Scholar
    • Export Citation
  • Askne, J., and H. Nordius, 1987: Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci., 22, 379386.

  • Bevis, M., S. Susinger, T. Herring, C. Rocken, R. A. Anthes, and R. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res., 97 (D14), 15 78715 801.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., G. Chiswell, T. A. Herring, R. Anthes, C. Rocken, and E. R. H. Ware, 1994: GPS meteorology: Mapping zenith wet delays into precipitable water. J. Appl. Meteor., 33, 379386.

    • Search Google Scholar
    • Export Citation
  • Davis, J. L., T. A. Herring, I. Shapiro, A. E. Rogers, and G. Elgened, 1985: Geodesy by interferometry: Effects of atmospheric modeling errors on estimates of base line length. Radio Sci., 20, 15931607.

    • Search Google Scholar
    • Export Citation
  • Deblonde, G., S. Macpherson, Y. Mireault, and P. Héroux, 2005: Evaluation of GPS precipitable water over Canada and the IGS network. J. Appl. Meteor., 44, 153166.

    • Search Google Scholar
    • Export Citation
  • Dick, G., G. Gendt, and C. Reigber, 2001: First experience with near real-time water vapor estimation in a German GPS network. J. Atmos. Sol. Terr. Phys., 63, 12951304.

    • Search Google Scholar
    • Export Citation
  • Emardson, T. R., 1998: Studies of atmospheric water vapor using the Global Positioning System. School of Electrical and Computer Engineering Tech. Rep. 339, Charmers University of Technology, Göteborg, Sweden, 29 pp.

  • Emardson, T. R., and H. J. P. Derks, 2000: On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere. Meteor. Appl., 7, 6168, doi:10.1017/S1350482700001377.

    • Search Google Scholar
    • Export Citation
  • Fernández, L. I., P. Salio, M. P. Natali, and A. M. Meza, 2010: Estimation of precipitable water vapour from GPS measurements in Argentina: Validation and qualitative analysis of results. Adv. Space Res., 46, 879894.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., M. Shiotani, F. Hasebe, H. Vömel, S. J. Oltmans, P. W. Ruppert, T. Horinouchi, and T. Tsuda, 2003: Performance of the Meteolabor “Snow White” chilled-mirror hygrometer in the tropical troposphere: Comparisons with the Vaisala RS80 A/H-Humicap sensors. J. Atmos. Oceanic Technol., 20, 15341542.

    • Search Google Scholar
    • Export Citation
  • Gregorius, T., 1996: How it works… GIPSY OASIS II. Dept. of Geomatics, University of Newcastle upon Tyne, 167 pp. [Available online at http://www.gps.caltech.edu/classes/ge167/file/gipsy-oasisIIHowItWorks.pdf.]

  • Guerova, G., E. Brockmann, J. Quiby, F. Schubiger, and C. Matzler, 2003: Validation of NWP mesoscale models with Swiss GPS Network AGNES. J. Appl. Meteor., 42, 141150.

    • Search Google Scholar
    • Export Citation
  • Herring, T. A., R. W. King, and S. C. Mcclusky, cited2012: Documentations for the GAMIT–GLOBK GPS analysis software. Dept. of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology. [Available online at http://www-gpsg.mit.edu/~simon/gtgk/.]

  • Ingold, T., B. Schmid, C. Mätzler, P. Demoulin, and N. Kämpfer, 2000: Modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.72, 0.82, and 0.94 absorption bands. J. Geophys. Res., 105, 24 32724 343.

    • Search Google Scholar
    • Export Citation
  • Jade, S., M. S. M. Vijayan, V. K. Gaur, Tushar, P. Prabhu, S. C. Sahu, 2005: Estimates of precipitable water vapour from GPS data over the Indian subcontinent. J. Atmos. Sol. Terr. Phys., 67, 623635.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. A., and D. W. Wichern, 1992: Applied Multivariate Statistical Analysis. Pearson, 800 pp.

  • Ku, H. H., 1966: Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand., 70C, 262.

  • Liou, Y.-A., Y.-T. Teng, T. Van Hove, and J. C. Liljegren, 2001: Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteor., 40, 515.

    • Search Google Scholar
    • Export Citation
  • Mendes, V. B., G. Prates, L. Santos, and R. B. Langley, 2000: An evaluation of the accuracy of models for the determination of the weighted mean temperature of the atmosphere. Preprints, 13th IONGPS Int. Tech. Meeting, Anaheim, CA, Institute of Navigation. [Available online at gauss.gge.unb.ca/papers.pdf/ion2000ntm.pdf‎.]

  • Monico, J. F. G., P. de Oliveira Camargo, D. B. Marra Alves, and G. P. dos S. Rosa, 2009: São Paulo state continuous GNSS network: status and services available. Proc. Geodesy for Planet Earth, Buenos Aires, Argentina, Int. Association of Geodesy.

  • Nash, J., T. Oakley, H. Vömel, and LI Wei, 2011: WMO intercomparison of high quality radiosonde systems. WMO Rep. 107, WMO/TD-No. 1580, 248 pp.

  • Rocken, C., T. Van Hove, and R. H. Ware, 1997: Near real-time GPS sensing of atmospheric water vapor. Geophys. Res. Lett., 24, 32213224.

    • Search Google Scholar
    • Export Citation
  • Ross, R. J., and S. Rosenfeld, 1997: Estimating mean weighted temperature of the atmosphere for Global Positioning System applications. J. Geophys. Res., 102 (D18), 21 71921 730.

    • Search Google Scholar
    • Export Citation
  • Sapucci, L. F., L. A. T. Machado, R. B. Silveira, G. Fisch, and J. F. G. Monico, 2005: Analysis of relative humidity sensors at WMO radiosonde intercomparison experiment in Brazil. J. Atmos. Oceanic Technol., 22, 664678.

    • Search Google Scholar
    • Export Citation
  • Sapucci, L. F., L. A. T. Machado, and J. F. G. A. Plana-Fattori, 2007: Intercomparison of integrated water vapor estimates from multisensor in the Amazonian region. J. Atmos. Oceanic Technol., 24, 18801894.

    • Search Google Scholar
    • Export Citation
  • Schueler, T., G. W. Hein, and R. Biberger, 2001: A global analysis of the mean atmospheric temperature for GPS water vapor estimation. Preprints, 14th IONGNSS Int. Tech. Meeting, Salt Lake City, UT, Institute of Navigation.

  • Spilker, J., Jr., 1994: Tropospheric effects on GPS. Global Positioning System: Theory and Applications, B. L. Parkinson and J. J. Spilker Jr., Eds., Vol. 1, American Institute of Aeronautics and Astronautics, 517546.

    • Search Google Scholar
    • Export Citation
  • Sun, B., A. Reale, D. J. Seidel, and D. C. Hunt, 2010: Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 115, D23104, doi:10.1029/2010JD014457.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192.

  • Turner, D. D., B. M. Lesht, S. A. Clough, J. C. Liljegren, H. E. Revercomb, and D. C. Tobin, 2003: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Oceanic Technol., 20, 117132.

    • Search Google Scholar
    • Export Citation
  • Van Baelen, J., J. P. Albagnag, and A. Dabas, 2005: Comparison of near–real time estimates of integrated water vapor derived with GPS, radiosondes, and microwave radiometer. J. Atmos. Oceanic Technol., 22, 201210.

    • Search Google Scholar
    • Export Citation
  • Vey, S., R. Dietrich, A. Rülke, M. Fritsche, P. Steigenberger, and M. Rothacher, 2010: Validation of precipitable water vapor within the NCEP/DOE Reanalysis using global GPS observations from one decade. J. Climate, 23, 16751695.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurements errors from the Vaisala RS80 radiosonde—Application to TOGA CARE data. J. Atmos. Oceanic Technol., 19, 9811002.

    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, and A. Dai, 2005: Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res., 110, D21101, doi:10.1029/2005JD006215.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1541 1107 55
PDF Downloads 609 80 12