A Trend Analysis of the 1930–2010 Extreme Heat Events in the Continental United States

Evan M. Oswald Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Evan M. Oswald in
Current site
Google Scholar
PubMed
Close
and
Richard B. Rood Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Richard B. Rood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme heat events (EHEs) are linked to mortality rates, making them an important research subject in both the climate and public health fields. This study evaluated linear trends in EHEs using the U.S. Historical Climatology Network (USHCN), version 2.0, dataset and quantified the longer-term EHE trends across the continental United States (CONUS). The USHCN-daily, version 1, dataset was integrated with the homogenized USHCN-monthly, version 2.0, dataset to create daily data for trend analysis. Time series and estimated trends in multiple characteristics of EHEs (number, total days, mean duration, etc.) were calculated as were the continental means and spatial maps. The differences between EHEs based on daily maximum temperatures, minimum temperatures, and both minimum and maximum temperatures were explored. To focus on warming and cooling periods, the trends were also estimated separately over the first half and second half of the study period (1930–2010). The results indicated that the trends for different EHE characteristics were coherent (e.g., temporally correlated, similar spatial pattern of trends). Maps indicated negative trends in the interior of the CONUS and positive trends in coastal and southern areas. Continental-scale increases between 1970 and 2010 were mostly offset by the decreases between 1930 and 1970. Several daily maximum (minimum) EHEs near the 1930s (2000s) led to 1930–2010 trends of daily maximum (minimum) EHEs decreasing (increasing). Last, the results suggest that linear trends depend on which daily temperature extreme is required to exceed the threshold.

Great Lakes Regional Integrated Sciences and Assessments Center Contribution Number 2013-4.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-13-071.s1.

Corresponding author address: Evan Oswald, Geography Dept., University of Vermont, 94 University Place, Burlington, VT 05401. E-mail: eoswald@uvm.edu

Abstract

Extreme heat events (EHEs) are linked to mortality rates, making them an important research subject in both the climate and public health fields. This study evaluated linear trends in EHEs using the U.S. Historical Climatology Network (USHCN), version 2.0, dataset and quantified the longer-term EHE trends across the continental United States (CONUS). The USHCN-daily, version 1, dataset was integrated with the homogenized USHCN-monthly, version 2.0, dataset to create daily data for trend analysis. Time series and estimated trends in multiple characteristics of EHEs (number, total days, mean duration, etc.) were calculated as were the continental means and spatial maps. The differences between EHEs based on daily maximum temperatures, minimum temperatures, and both minimum and maximum temperatures were explored. To focus on warming and cooling periods, the trends were also estimated separately over the first half and second half of the study period (1930–2010). The results indicated that the trends for different EHE characteristics were coherent (e.g., temporally correlated, similar spatial pattern of trends). Maps indicated negative trends in the interior of the CONUS and positive trends in coastal and southern areas. Continental-scale increases between 1970 and 2010 were mostly offset by the decreases between 1930 and 1970. Several daily maximum (minimum) EHEs near the 1930s (2000s) led to 1930–2010 trends of daily maximum (minimum) EHEs decreasing (increasing). Last, the results suggest that linear trends depend on which daily temperature extreme is required to exceed the threshold.

Great Lakes Regional Integrated Sciences and Assessments Center Contribution Number 2013-4.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-13-071.s1.

Corresponding author address: Evan Oswald, Geography Dept., University of Vermont, 94 University Place, Burlington, VT 05401. E-mail: eoswald@uvm.edu
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Alfaro, E. J., A. Gershunov, and D. Cayan, 2006: Prediction of summer maximum and minimum temperature over the central and western United States: The roles of soil moisture and sea surface temperature. J. Climate, 15, 14071421.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. G., and M. L. Bell, 2009: Weather-related mortality: How heat, cold and heat waves affect mortality in the United States. Epidemiology, 20, 205213, doi:10.1097/EDE.0b013e318190ee08.

    • Search Google Scholar
    • Export Citation
  • Baccini, M., and Coauthors, 2008: Heat effects on mortality in 15 European cities. Epidemiology, 19, 711–719, doi:10.1097/EDE.0b013e318176bfcd.

    • Search Google Scholar
    • Export Citation
  • Basu, R., W. Feng, and B. D. Ostro, 2008: Characterizing temperature and mortality in nine California counties. Epidemiology, 19, 138145, doi:10.1097/EDE.0b013e31815c1da7.

    • Search Google Scholar
    • Export Citation
  • Brown, D. G., K. M. Johnson, T. R. Loveland, and D. M. Theobald, 2005: Rural land-use trends in the conterminous United States, 1950–2000. Ecol. Appl., 15, 18511863, doi:10.1890/03-5220.

    • Search Google Scholar
    • Export Citation
  • Brown, D., R. Brownrigg, M. Haley, and W. Huang, cited 2012: NCAR Command Language (NCL), version 6.1.1. UCAR/NCAR Computational and Informational Systems Laboratory (CISL). [Available online at http://www.ncl.ucar.edu/.]

  • Brown, P. J., and A. T. DeGaetano, 2013: Trends in U.S. surface humidity, 1930–2010. J. Appl. Meteor. Climatol., 52, 147163.

  • Brown, P. J., R. S. Bradley, and F. T. Keimig, 2010: Changes in extreme climate indices for the northeastern United States, 1870–2005. J. Climate, 23, 65556572.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., and R. J. Allen, 2002: Trends in twentieth-century temperature extremes across the United States. J. Climate, 15, 31883205.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., R. J. Allen, and K. P. Gallo, 2002: A homogenized historical temperature extreme dataset for the United States. J. Atmos. Oceanic Technol., 19, 12671284.

    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., M. R. Haylock, J. Luterbacher, and H. Wanner, 2007: Doubled length of western European summer heat waves since 1880. J. Geophys. Res., 112, D15103, doi:10.1029/2007JD008510.

    • Search Google Scholar
    • Export Citation
  • Díaz, J., R. García, F. Velázquez de Castro, E. Hernández, C. López, and A. Otero, 2002: Effects of extremely hot days on people older than 65 years of Seville (Spain) from 1986 to 1997. Int. J. Biometeor., 46, 145149, doi:10.1007/s00484-002-0129-z.

    • Search Google Scholar
    • Export Citation
  • Díaz, J., R. García-Herrara, R. M. Trigo, C. Linares, M. A. Valente, J. M. De Miguel, and E. Hernández, 2006: The impact of the summer 2003 heat wave in Iberia: How should we measure it? Int. J. Biometeor., 50, 159166, doi:10.1007/s00484-005-0005-8.

    • Search Google Scholar
    • Export Citation
  • Di Luzio, M., G. L. Johnson, C. Daly, J. K. Eischeid, and J. G. Arnold, 2008: Constructing retrospective gridded daily precipitation and temperature datasets for conterminous United States. J. Appl. Meteor. Climatol., 47, 475497.

    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, and R. S. Vose, 2008: Strategies for evaluating quality assurance procedures. J. Appl. Meteor. Climatol., 47, 17851791.

    • Search Google Scholar
    • Export Citation
  • Fall, S., D. Niyogi, A. Gluhovsky, R. A. Pielke Sr., E. Kalnay, and G. Rochon, 2010: Impacts of land use land cover on temperature trends over the continental United States: Assessment using the North American Regional Reanalysis. Int. J. Climatol., 30, 19801993, doi:10.1002/joc.1996.

    • Search Google Scholar
    • Export Citation
  • Fouillet, A., and Coauthors, 2006: Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health, 80, 16–24, doi:10.1007/s00420-006-0089-4.

    • Search Google Scholar
    • Export Citation
  • Fouillet, A., G. Rey, E. Jougla, P. Frayssinet, P. Bessemoulin, and D. Hémon, 2007: A predicative model relating daily fluctuations in summer temperatures and mortality rates. BMC Public Health, 7, 114125, doi:10.1186/1471-2458-7-114.

    • Search Google Scholar
    • Export Citation
  • Fouillet, A., and Coauthors, 2008: Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int. J. Epidemiol., 37, 309317, doi:10.1093/ije/dym253.

    • Search Google Scholar
    • Export Citation
  • Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, doi:10.3354/cr019193.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., and R. J. Ross, 1998: Increased summertime heat stress in the U.S. Nature, 396, 529530.

  • Gallo, K. P., D. R. Easterling, and T. C. Peterson, 1996: The influence of land use/land cover on climatological values of the diurnal temperature range. J. Climate, 9, 29412944.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., D. R. Cayan, and S. F. Iacobellis, 2009: The heat wave over California and Nevada: Signal of an increasing trend. J. Climate, 22, 61816203.

    • Search Google Scholar
    • Export Citation
  • Gold, C. M., 1991: Problems with handling spatial data—The Voronoi approach. Crit. Incident Stress Manage. J., 45, 6580.

  • Griffiths, M. L., and R. S. Bradley, 2007: Variations of twentieth-century temperature and precipitation extreme indicators in the northeast United States. J. Climate, 20, 54015417.

    • Search Google Scholar
    • Export Citation
  • Grize, L., A. Huss, O. Thommen, C. Schinder, and C. Braun-Fahrländer, 2005: Heat wave 2003 and mortality in Switzerland. Swiss Med. Wkly., 135, 200205.

    • Search Google Scholar
    • Export Citation
  • Grumm, R. H., 2011: The Central European and Russian heat event of July–August 2010. Bull. Amer. Meteor. Soc., 92, 12851297.

  • Hajat, S., R. S. Kovats, R. W. Atkinson, and A. Haines, 2002: Impact of hot temperatures on death in London: A time series approach. J. Epidemiol. Community Health, 56, 367372, doi:10.1136/jech.56.5.367.

    • Search Google Scholar
    • Export Citation
  • Hajat, S., and Coauthors, 2006: Impact of high temperatures on mortality: Is there an added heat wave effect? Epidemiology, 6, 632638, doi:10.1097/01.ede.0000239688.70829.63.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and D. P. Lettenmaier, 2005: Production of temporally consistent gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6, 330336.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hausfather, Z., M. J. Menne, C. N. Williams, T. Masters, R. Broberg, and D. Jones, 2013: Quantifying the effect of urbanization on U.S. Historical Climatology Network temperature records. J. Geophys. Res. Atmos., 118, 481494, doi:10.1029/2012JD018509.

    • Search Google Scholar
    • Export Citation
  • Henschel, A., L. L. Burton, L. Margolies, and J. E. Smith, 1969: An analysis of the heat deaths in St. Louis during July, 1966. Amer. J. Public Health Nations Health, 59, 22322242.

    • Search Google Scholar
    • Export Citation
  • Huth, R., J. Kyselý, and L. Pokorńa, 2000: A LAT simulation of heat waves, dry spells, and their relationships to circulation. Climatic Change, 46, 2960.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., 1991: A new approach to evaluate the impact of climate on human mortality. Environ. Health Perspect., 96, 145150.

  • Kalkstein, L. S., and R. E. Davis, 1989: Weather and human mortality: An evaluation of demographic and interregional responses in the United States. Ann. Assoc. Amer. Geogr., 79, 4464, doi:10.1111/j.1467-8306.1989.tb00249.x.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., and K. E. Smoyer, 1993: The impact of climate change on human health: Some international implications. Cell. Mol. Life Sci., 49, 969979.

    • Search Google Scholar
    • Export Citation
  • Kaplan, E. L., and P. Meier, 1958: Nonparametric estimation for incomplete observations. J. Amer. Stat. Assoc., 53, 457481.

  • Karl, T. R., and R. W. Knight, 1997: The 1995 Chicago heat wave: How likely is a recurrence? Bull. Amer. Meteor. Soc., 78, 11071119.

  • Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16, 36663680.

    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and Coauthors, 2006: Changes in daily temperature and precipitation extremes in central and south Asia. J. Geophys. Res., 111, D16105, doi:10.1029/2005JD006316.

    • Search Google Scholar
    • Export Citation
  • Kuglitsch, F. G., A. Toreti, E. Xoplaki, P. M. Della-Mart, C. S. Zerefos, M. Türkes, and J. Luterbacher, 2010: Heat wave change in the eastern Mediterranean since 1960. Geophys. Res. Lett., 37, L04802, doi:10.1029/2009GL041841.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., X. Liang, J. Zhu, and Y. Lin, 2006: Can CGCMs simulate the twentieth-century “warming hole” in the central United States. J. Climate, 19, 41374153.

    • Search Google Scholar
    • Export Citation
  • Kyselý, J., 2010: Recent severe heat waves in central Europe: How to view them in a long-term prospect. Int. J. Climatol., 30, 89109, doi:10.1002/joc.1874.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, doi:10.1073/pnas.0306738101.

    • Search Google Scholar
    • Export Citation
  • Meehl, C. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Meehl, C. A., J. M. Arblaster, and G. Branstator, 2012: Mechanisms contributing to the warming hole and the consequent U.S. east–west differential of heat extremes. J. Climate, 25, 63946408.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams Jr., 2005: Detection of undocumented changepoints using multiple test statistics and composite reference series. J. Climate, 18, 42714286.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams Jr., 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22, 17001717.

  • Menne, M. J., C. N. Williams Jr., and R. S. Vose, 2009: The United States Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 9931007.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., C. N. Williams Jr., and M. A. Palecki, 2010: On the reliability of the U.S. surface temperature record. J. Geophys. Res., 115, D11108, doi:10.1029/2009JD013094.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., C. N. Williams Jr., and R. S. Vose, cited 2011: United States Historical Climatology Network (USHCN) version 2 serial monthly dataset. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at http://www.ncdc.noaa.gov/oa/climate/research/ushcn/.]

  • Menne, M. J., C. N. Williams Jr., and R. S. Vose, cited 2012: United States Historical Climatology Network daily temperature, precipitation, and snow data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at http://gcmd.nasa.gov/records/GCMD_CDIAC_NDP070.html.]

  • Misra, V., J. P. Michael, R. Boyles, E. P. Chassingnet, M. Griffin, and J. J. O’Brien, 2012: Reconciling the spatial distribution of the surface temperature trends in the southeastern U.S. J. Climate, 25, 36103618.

    • Search Google Scholar
    • Export Citation
  • Moberg, A., and P. D. Jones, 2005: Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901–99. Int. J. Climatol., 25, 11491171, doi:10.1002/joc.1163.

    • Search Google Scholar
    • Export Citation
  • New, M., and Coauthors, 2006: Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res., 111, D14102, doi:10.1029/2005JD006289.

    • Search Google Scholar
    • Export Citation
  • Ostro, B. D., L. A. Roth, R. S. Green, and R. Basu, 2009: Estimating the mortality effect of the July 2006 California heat wave. Environ. Res., 109, 614619, doi:10.1016/j.envres.2009.03.010.

    • Search Google Scholar
    • Export Citation
  • Páldy, A., J. Bobvos, A. Vámos, R. S. Kovats, and S. Hajat, 2005: The effect of temperature and heat waves on daily mortality in Budapest, Hungary, 1970–2000. Extreme Weather Events and Public Health Responses, W. Kirch, B. Menne, and R. Bertollini, Eds., Springer, 99–107.

  • Pan, Z., R. W. Arritt, E. S. Takle, W. J. Gutowski Jr., C. J. Anderson, and M. Segal, 2004: Altered hydrologic feedback in a warming climate introduces a “warming hole.” Geophys. Res. Lett., 31, L17109, doi:10.1029/2004GL020528.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., and L. V. Alexander, 2013: On the measurement of heat waves. J. Climate, 26, 45004517.

  • Peterson, T. C., X. Zhang, M. Brunet-India, and J. L. Vázquez-Aguirre, 2008: Changes in North American extremes derived from daily weather data. J. Geophys. Res., 113, D07113, doi:10.1029/2007JD009453.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, doi:10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., S. Solomon, and G. C. Hegerl, 2009: Spatial and seasonal patterns in climate change temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA, 106, 73247329, doi:10.1073/pnas.0808533106.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., R. Reudy, and J. E. Hansen, 2002: General circulation model simulations of recent cooling in the east-central United States. J. Geophys. Res., 107, 4748, doi:10.1029/2001JD001577.

    • Search Google Scholar
    • Export Citation
  • Rooney, C., A. J. McMichael, R. S. Kovats, and M. P. Coleman, 1998: Excess mortality in England and Wales, and in Greater London, during the 1995 heatwave. J. Epidemiol. Community Health, 52, 482486.

    • Search Google Scholar
    • Export Citation
  • Schwartz, J., 2005: Who is sensitive to extremes of temperature?: A case-only analysis. Epidemiology, 1, 6772, doi:10.1097/01.ede.0000147114.25957.71.

    • Search Google Scholar
    • Export Citation
  • Segal, M., Z. Pan, R. W. Turner, and E. S. Takle, 1998: On the potential impact of irrigated areas in North America on summer rainfall caused by large-scale systems. J. Appl. Meteor., 37, 325331.

    • Search Google Scholar
    • Export Citation
  • Shen, S. S. P., A. Gurung, H. Oh, T. Shu, and D. R. Easterling, 2011: The twentieth century contiguous US temperature changes indicated by daily data and higher statistical moments. Climatic Change, 109, 287317, doi:10.1007/s10584-011-0033-9.

    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1984: A universal scale of apparent temperature. J. Climate Appl. Meteor., 23, 16741687.

  • Tamrazian, A., S. LaDochy, J. Willis, and W. C. Patzert, 2008: Heat waves in Southern California: Are they becoming more frequent and longer lasting? Yearb. Assoc. Pac. Coast Geogr., 70, 5969, doi:10.1353/pcg.0.0001.

    • Search Google Scholar
    • Export Citation
  • Tan, J., Y. Zheng, G. Song, L. S. Kalkstein, A. J. Kalkstein, and X. Tang, 2007: Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int. J. Biometeor., 51, 193200, doi:10.1007/s00484-006-0058-3.

    • Search Google Scholar
    • Export Citation
  • Tomozeiu, R., V. Pavan, C. Cacciamani, and M. Amici, 2006: Observed temperature changes in Emilia-Romagna: Mean values and extremes. Climate Res., 31, 217225.

    • Search Google Scholar
    • Export Citation
  • USGS, cited 2012: Trends in water use in the United States, 1950 to 2005. USGS Water Science School. [Available online at http://ga.water.usgs.gov/edu/wateruse-trends.html.]

  • Vaneckova, P., G. Neville, V. Tippett, P. Aitken, G. FitzGerald, and S. Tong, 2011: Do biometeorological indices improve modeling outcomes of heat-related mortality? J. Appl. Meteor. Climatol., 50, 11651176.

    • Search Google Scholar
    • Export Citation
  • Williams, C. N., M. J. Menne, and P. W. Thorne, 2012: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. J. Geophys. Res., 117, D05116, doi:10.1029/2011JD016761.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., H. Lin, J. Li, Z. Jiang, and T. Ma, 2012: Heat wave frequency variability over North America: Two distinct leading modes. J. Geophys. Res., 117, D02102, doi:10.1029/2011JD016908.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., R. B. Rood, G. Michailidis, E. M. Oswald, J. D. Schwartz, A. Zanobetti, K. L. Ebi, and M. S. O’Neill, 2012: Comparing exposure metrics for classifying ‘dangerous heat’ in heat wave and health warning systems. Environ. Int., 46, 2329, doi:10.1016/j.envint.2012.05.001.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Hegerl, F. W. Zwiers, and J. Kenyon, 2005: Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Climate, 18, 16411651.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2021 894 46
PDF Downloads 541 100 15