Change-Point Analysis of Polar Zone Radiosonde Temperature Data

V. K. Jandhyala Department of Mathematics, Washington State University, Pullman, Washington

Search for other papers by V. K. Jandhyala in
Current site
Google Scholar
PubMed
Close
,
P. Liu Philips Healthcare, Seattle, Washington

Search for other papers by P. Liu in
Current site
Google Scholar
PubMed
Close
,
S. B. Fotopoulos Department of Finance and Management Sciences, Washington State University, Pullman, Washington

Search for other papers by S. B. Fotopoulos in
Current site
Google Scholar
PubMed
Close
, and
I. B. MacNeill Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada

Search for other papers by I. B. MacNeill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A comprehensive change-point analysis of annual radiosonde temperature measurements collected at the surface, troposphere, tropopause, and lower-stratosphere levels at both the South and North Polar zones has been done. The data from each zone are modeled as a multivariate Gaussian series with a possible change point in both the mean vector as well as the covariance matrix. Prior to carrying out an analysis of the data, a methodology for computing the large sample distribution of the maximum likelihood estimator of the change point is first developed. The Bayesian approach for change-point estimation under conjugate priors is also developed. A simulation study is carried out to compare the maximum likelihood estimator and various Bayesian estimates. Then, a comprehensive change-point analysis under a multivariate framework is carried out on the temperature data for the period 1958–2008. Change detection is based on the likelihood ratio procedure, and change-point estimation is based on the maximum likelihood principle and other Bayesian procedures. The analysis showed strong evidence of change in the correlation between tropopause and lower-stratosphere layers at the South Polar zone subsequent to 1981. The analysis also showed evidence of a cooling effect at the tropopause and lower-stratosphere layers, as well as a warming effect at the surface and troposphere layers at both the South and North Polar zones.

Corresponding author address: V. K. Jandhyala, Dept. of Mathematics, Washington State University, Pullman, WA 99164-3113. E-mail: jandhyala@wsu.edu

Abstract

A comprehensive change-point analysis of annual radiosonde temperature measurements collected at the surface, troposphere, tropopause, and lower-stratosphere levels at both the South and North Polar zones has been done. The data from each zone are modeled as a multivariate Gaussian series with a possible change point in both the mean vector as well as the covariance matrix. Prior to carrying out an analysis of the data, a methodology for computing the large sample distribution of the maximum likelihood estimator of the change point is first developed. The Bayesian approach for change-point estimation under conjugate priors is also developed. A simulation study is carried out to compare the maximum likelihood estimator and various Bayesian estimates. Then, a comprehensive change-point analysis under a multivariate framework is carried out on the temperature data for the period 1958–2008. Change detection is based on the likelihood ratio procedure, and change-point estimation is based on the maximum likelihood principle and other Bayesian procedures. The analysis showed strong evidence of change in the correlation between tropopause and lower-stratosphere layers at the South Polar zone subsequent to 1981. The analysis also showed evidence of a cooling effect at the tropopause and lower-stratosphere layers, as well as a warming effect at the surface and troposphere layers at both the South and North Polar zones.

Corresponding author address: V. K. Jandhyala, Dept. of Mathematics, Washington State University, Pullman, WA 99164-3113. E-mail: jandhyala@wsu.edu
Save
  • Akaike, H., 1973: Information theory and an extension of the maximum likelihood principle. Second International Symposium on Information Theory, B. N. Petrov and F. Csaki, Eds., Academiai Kiado, 267–281.

  • Alexandersson, H., 1986: A homogeneity test applied to precipitation data. J. Climatol., 6, 661675.

  • Alexandersson, H., and A. Moberg, 1997: Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. Int. J. Climatol., 17, 2534.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., and Coauthors, 2002: Abrupt Climate Changes: Inevitable Surprises. National Academy Press, 221 pp.

  • Angell, J. K., 1986: Annual and seasonal global temperature changes in the troposphere and low stratosphere, 1960–85. Mon. Wea. Rev., 114, 19221930.

    • Search Google Scholar
    • Export Citation
  • Angell, J. K., 1999: Comparison of surface and tropospheric temperature trends estimated from a 63-station radiosonde network, 1958–1998. Geophys. Res. Lett., 26, 27612764.

    • Search Google Scholar
    • Export Citation
  • Angell, J. K., 2003: Effect of exclusion of anomalous tropical stations on temperature trends from a 63-station radiosonde network, and comparison with other analyses. J. Climate, 16, 22882295.

    • Search Google Scholar
    • Export Citation
  • Angell, J. K., cited 2012: Global, hemispheric, and zonal temperature deviations derived from radiosonde records. Trends Online: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, doi:10.3334/CDIAC/cli.005.

    • Search Google Scholar
    • Export Citation
  • Beaulieu, C., J. Chen, and J. L. Sarmiento, 2012: Change-point analysis as a tool to detect abrupt climate variations. Philos. Trans. Roy. Soc. London,370A, 1228–1249.

    • Search Google Scholar
    • Export Citation
  • Berliner, L. M., C. Wikle, and N. Cressie, 2000: Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. J. Climate, 13, 39533968.

    • Search Google Scholar
    • Export Citation
  • Borovkov, A. A., 1999: Asymptotically optimal solutions in the change-point problem. Theory Probab. Its Appl. (English translation), 43, 539561.

    • Search Google Scholar
    • Export Citation
  • Briggs, W. M., 2008: On the changes in the number and intensity of North Atlantic tropical cyclones. J. Climate, 21, 13871402.

  • Cagnazzo, C., C. Claud, and S. Hare, 2006: Aspects of stratospheric long-term changes induced by ozone depletion. Climate Dyn., 27, 101111.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and A. K. Gupta, 2001: On change point detection and estimation . Commun. Stat.-Simul. Comput.,30, 665–697.

  • Cobb, G. W., 1978: The problem of the Nile: Conditional solution to a change-point problem. Biometrika, 65, 243251.

  • Comiso, J. C., 2003: Warming trends in the Arctic from clear sky satellite observations. J. Climate, 16, 34983510.

  • Compagnucci, R. H., M. Salles, and P. Canziani, 2001: The spatial and temporal behaviour of the lower stratospheric temperature over the Southern Hemisphere: The MSU view. Part I: Data, methodology and temporal behaviour. Int. J. Climatol., 21, 419437.

    • Search Google Scholar
    • Export Citation
  • Csörgö, M., and L. Horváth, 1997: Limit Theorems in Change-Point Analysis.J. Wiley and Sons, 414 pp.

  • Davies, R. B., 1980: Algorithm AS 155: The distribution of a linear combination of random variables. Appl. Stat., 29, 323333.

  • DeGaetano, A. T., 2006: Attributes of several methods for detecting discontinuities in temperature series: Prospects for a hybrid homogenization procedure. J. Climate, 9, 16461660.

    • Search Google Scholar
    • Export Citation
  • Ducré-Robitaille, J., L. Vincent, and G. Boulet, 2003: Comparison of techniques for detection of discontinuities in temperature series. Int. J. Climatol., 23, 10871101.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and T. Peterson, 1995: A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol., 15, 369377.

    • Search Google Scholar
    • Export Citation
  • Fearly, R., and J. Sweeny, 2005: Detection of a possible change point in atmospheric variability in the North Atlantic and its effect on Scandinavian glacier mass balance. Int. J. Climatol., 25, 18191833.

    • Search Google Scholar
    • Export Citation
  • Fearnhead, P., 2005: Exact Bayesian curve fitting and signal segmentation. IEEE Trans. Signal Process., 53, 21602166.

  • Fearnhead, P., 2006: Exact and efficient Bayesian inference for multiple change-point problems. Stat. Comput., 16, 203213.

  • Feng, S., Y. Fu, and Q. Xiao, 2012: Trends in the global tropopause thickness revealed by radiosondes. Geophys. Res. Lett., 39, L20706, doi:10.1029/2012GL053460.

    • Search Google Scholar
    • Export Citation
  • Field, C., 1993: Tail areas of linear combinations of central chi-squares and non-central chi-squares. J. Statist. Comput. Simul., 45, 243248.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., G. Bodeker, R. Schofield, S. Solomon, and D. Thompson, 2007: Effects of ozone cooling in the tropical lower stratosphere and upper troposphere. Geophys. Res. Lett., 34, L23813, doi:10.1029/2007GL031994.

    • Search Google Scholar
    • Export Citation
  • Fotopoulos, S. B., and V. K. Jandhyala, 2001: Maximum likelihood estimation of a change-point for exponentially distributed random variables. Stat. Probab. Lett., 51, 423429.

    • Search Google Scholar
    • Export Citation
  • Fotopoulos, S. B., V. K. Jandhyala, and E. Khapalova, 2010: Exact asymptotic distribution of the change-point MLE for change in the mean of Gaussian sequences. Ann. Appl. Stat., 4, 10811104.

    • Search Google Scholar
    • Export Citation
  • Fotopoulos, S. B., V. K. Jandhyala, and E. Khapalova, 2011: Change-point MLE in the rate of exponential sequences with application to Indonesian seismological data. J. Stat. Plann. Inference, 141, 220234.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., 1994: Temporal inhomogeneities in radiosonde temperature records. J. Geophys. Res., 99, 36673676.

  • Gaffen, D. J., M. Sargent, R. Habermann, and J. Lanzante, 2000: Sensitivity of tropospheric and stratospheric temperature trends to radiosonde data quality. J. Climate, 13, 17761796.

    • Search Google Scholar
    • Export Citation
  • Henze, N., and B. Zirkler, 1990: A class of invariant and consistent tests for multivariate normality. Comm. Stat.: Theory Methods, 19, 35953617.

    • Search Google Scholar
    • Export Citation
  • Hinkley, D. V., 1972: Time ordered classification. Biometrika, 59, 509523.

  • Hochberg, Y., and A. Tamhane, 1987: Multiple Comparison Procedures.J. Wiley and Sons, 450 pp.

  • Horváth, L., P. Kokoszka, and J. Steinebach, 1999: Testing for changes in multivariate dependent observations with an application to temperature changes. J. Multivariate Anal., 68, 96119.

    • Search Google Scholar
    • Export Citation
  • Imhof, J. P., 1961: Computing the distribution of a quadratic form in normal variables. Biometrika, 48, 419426.

  • Jandhyala, V. K., and S. B. Fotopoulos, 1999: Capturing the distributional behavior of the maximum likelihood estimator of a change-point. Biometrika, 86, 129140.

    • Search Google Scholar
    • Export Citation
  • Jandhyala, V. K., P. Liu, and S. B. Fotopoulos, 2009: River stream flows in the northern Québec Labrador region: A multivariate change point analysis via maximum likelihood. Water Resour. Res., 45, W02408, doi:10.1029/2007WR006499.

    • Search Google Scholar
    • Export Citation
  • Jarušková, D., 1996: Change-point detection in meteorological measurement. Mon. Wea. Rev., 124, 15351543.

  • Jarušková, D., 2010: Asymptotic behavior of a test statistic for detection of change in mean of vectors. J. Stat. Plann. Inference, 140, 616625.

    • Search Google Scholar
    • Export Citation
  • Karcher, M., R. Gerdes, F. Kauker, and C. Koberle, 2003: Arctic warming—Evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean. J. Geophys. Res., 108, 3034, doi:10.1029/2001JC001265.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., S. J. Hassol, C. D. Miller, and W. L. Murray, Eds., 2006: Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences. U.S. Climate Change Science Program and Subcommittee on Global Change Research, 164 pp. [Available online at http://downloads.globalchange.gov/sap/sap1-1/sap1-1-final-all.pdf.]

  • Kuonen, D., 1999: Saddlepoint approximations for distributions of quadratic forms in normal variables. Biometrika, 86, 929935.

  • Lanzante, J., A. Stephen, and D. Siedel, 2003: Temporal homogenization of monthly radiosonde temperature data. J. Climate, 16, 224240.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and H. Wu, 2007: Detecting trends in tropical rainfall characteristics, 1979–2003. Int. J. Climatol., 27, 979988.

  • Lu, Z., 2006: The numerical evaluation of the probability density function of a quadratic form in normal variables. Comput. Stat. Data Anal., 51, 19861996.

    • Search Google Scholar
    • Export Citation
  • Lund, R., and J. Reeves, 2002: Detection of undocumented change points: A revision of the two-phase regression model. J. Climate, 15, 25472554.

    • Search Google Scholar
    • Export Citation
  • Mardia, K. V., 1970: Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519530.

  • McShane, B. B., and A. J. Wyner, 2011: A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable? Ann. Appl. Stat., 5, 544.

    • Search Google Scholar
    • Export Citation
  • Perreault, L., M. Haché, M. Slivitzky, and B. Bobée, 1999: Detection of changes in precipitation and runoff over eastern Canada and U.S. using Bayesian approach. Stochastic Environ. Res. Risk Assess., 13, 201216.

    • Search Google Scholar
    • Export Citation
  • Perreault, L., J. Bernier, B. Bobée, and É. Parent, 2000a: Bayesian change point analysis in hydrometeorological time series 1, part 1. J. Hydrol., 235, 221241.

    • Search Google Scholar
    • Export Citation
  • Perreault, L., J. Bernier, B. Bobée, and É. Parent, 2000b: Bayesian change point analysis in hydrometeorological time series 1, part 2. J. Hydrol., 235, 242263.

    • Search Google Scholar
    • Export Citation
  • Perreault, L., É. Parent, J. Bernier, B. Bobée, and M. Slivitzky, 2000c: Retrospective multivariate Bayesian change-point analysis: A simultaneous single change in the mean of several hydrological sequences. Stochastic Environ. Res. Risk Assess., 14, 243261.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 1998: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18, 14931517.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71122.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Randel, W. J., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12, 14671479.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Reeves, J., J. Chen, X. Wang, R. Lund, and Q. Lu, 2007: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteor. Climatol., 46, 900915.

    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., 2004: A sequential algorithm for testing climate shifts. Geophys. Res. Lett., 31, L09204, doi:10.1029/2004GL019448.

  • Ruggieri, E., 2012: A Bayesian approach to detecting change points in climatic records. Int. J. Climatol., 33, 520528, doi:10.1002/joc.3447.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479483.

    • Search Google Scholar
    • Export Citation
  • Schleip, C., A. Menzel, and V. Dose, 2009: Bayesian analysis of changes in radiosonde atmospheric temperature. Int. J. Climatol., 29, 629641.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and J. R. Lanzante, 2004: An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. J. Geophys. Res., 109, D14108, doi:10.1029/2003JD004414.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res., 111, D21101, doi:10.1029/2006JD007363.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., N. P. Gillett, J. R. Lanzante, K. P. Shine, and P. W. Thorne, 2011: Stratospheric temperature trends: Our evolving understanding. WIREs. Climatic Change,2, 591–616.

    • Search Google Scholar
    • Export Citation
  • Seidou, O., and T. Ouarda, 2007: Recursion-based multiple change point detection in multiple linear regression and application to river streamflows. Water Resour. Res., 43, W07404, doi:10.1029/2006WR005021.

    • Search Google Scholar
    • Export Citation
  • Seidou, O., J. Asselin, and T. Ouarda, 2007: Bayesian multivariate linear regression with application to change point models in hydrometeorological variables. Water Resour. Res., 43, W08401, doi:10.1029/2005WR004835.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., R. Portmann, and D. Thompson, 2007: Contrasts between Antarctic and Arctic ozone depletion. Proc. Natl. Acad. Sci. USA, 104, 445449.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. F. Tandon, and L. M. Polvani, 2011: The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements. J. Geophys. Res., 116, D20113, doi:10.1029/2011JD016030.

    • Search Google Scholar
    • Export Citation
  • Son, Y. S., and S. Kim, 2005: Bayesian single change point detection in a sequence of multivariate normal observations. Statistics, 39, 373387.

    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., B. Hassler, H. Claude, P. Winkler, and R. Stolarski, 2003: Global distribution of total ozone and lower stratospheric temperature variations. Atmos. Chem. Phys., 3, 14211438.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and R. S. Vose, 2010: Reanalyses suitable for characterizing long-term trends: Are they really achievable? Bull. Amer. Meteor. Soc., 91, 353361.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., J. R. Lanzante, T. C. Peterson, D. J. Seidel, and K. P. Shine, 2010: Tropospheric temperature trends: History of an ongoing controversy. WIREs. Climatic Change,2, 66–88, doi:10.1002/wcc.80.

    • Search Google Scholar
    • Export Citation
  • Vincent, L. A., 1998: A technique for the identification of inhomogeneities in Canadian temperature series. J. Climate, 11, 10941104.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Q. Wen, and Y. Wu, 2007: Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteor. Climatol., 46, 916931.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., and P. Chu, 2006: Bayesian multiple change-point analysis of hurricane activity in the eastern North Pacific: A Markov chain Monte Carlo approach. J. Climate, 19, 564578.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., and W. Wang, 2010: Stability of the MSU-derived atmospheric temperature trend. J. Atmos. Oceanic Technol., 27, 19601971.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 933 757 26
PDF Downloads 161 28 9