• Ackerman, T. P., , K.-N. Liou, , F. P. J. Valero, , and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623.

  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , P. F. Soulen, , K. I. Strabala, , M. D. King, , S. A. Ackerman, , W. P. Menzel, , and P. Yang, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase. J. Geophys. Res., 105, 11 78111 792.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Coauthors, 2012: Tropospheric clouds in Antarctica. Rev. Geophys., 50, RG1004, doi:10.1029/2011RG000363.

  • Cho, H.-M., , S. L. Nasiri, , and P. Yang, 2009: Application of CALIOP measurements to the evaluation of cloud phase derived from MODIS infrared channels. J. Appl. Meteor. Climatol., 48, 21692180.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., , S. Robinson, , M. K. Dubey, , M. D. King, , Q. Fu, , and W. B. Clodius, 2006: Comparison of near-infrared and thermal infrared cloud phase detections. J. Geophys. Res., 111, D20203, doi:10.1029/2006JD007140.

    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., , and J. Quaas, 2004: Evaluation of cloud thermodynamic phase parameterizations in the LMDZ GCM by using POLDER satellite data. Geophys. Res. Lett., 31, L06126, doi:10.1029/2003GL019095.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., , M. Herman, , H. Chepfer, , J. Riédi, , G. Brogniez, , P. Couvert, , and G. Séze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geophys. Res., 105, 14 74714 759.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , M. E. Ockert-Bell, , and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., 2007: Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination. Geophys. Res. Lett., 34, L11812, doi:10.1029/2007GL029584.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309.

  • Huang, J., , P. Minnis, , B. Lin, , Y. Yi, , M. Khaiyer, , R. Arduini, , A. Fan, , and G. Mace, 2005: Advanced retrievals of multilayered cloud properties using multispectral measurements. J. Geophys. Res., 110, D15S18, doi:10.1029/2004JD005101.

    • Search Google Scholar
    • Export Citation
  • Huang, J., , P. Minnis, , B. Lin, , Y. Yi, , S. Sun-Mack, , T.-F. Fan, , and J. R. Ayers, 2006: Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements. Geophys. Res. Lett., 33, L21801, doi:10.1029/2006GL027038.

    • Search Google Scholar
    • Export Citation
  • Jin, H., 2012: Satellite remote sensing of mid-level clouds. Ph.D. dissertation, Texas A&M University, 151 pp.

  • Kahn, B. H., and Coauthors, 2008: Cloud-type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount. Atmos. Chem. Phys., 8, 12311248.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., , S. L. Nasiri, , M. M. Schreier, , and B. A. Baum, 2011: Impacts of subpixel cloud heterogeneity on infrared thermodynamic phase assessment. J. Geophys. Res., 116, D20201, doi:10.1029/2011JD015774.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2013: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 13, 14 47714 543.

  • Key, J., , and J. Intrieri, 2000: Cloud particle phase determination with the AVHRR. J. Appl. Meteor., 39, 17971805.

  • Knap, W. H., , P. Stammes, , and R. B. A. Koelemeijer, 2002: Cloud thermodynamic phase determination from near-infrared spectra of reflected sunlight. J. Atmos. Sci., 59, 8396.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., , O. Jourdan, , and J. P. Burrows, 2006: The cloud phase discrimination from a satellite. IEEE Trans. Geosci. Remote Sens., 3, 103106.

    • Search Google Scholar
    • Export Citation
  • Li, J., , Y. Yi, , P. Minnis, , J. Huang, , H. Yan, , Y. Ma, , W. Wang, , and J. K. Ayers, 2011: Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data. J. Quant. Spectrosc. Radiat. Transfer, 112, 361375.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , Q. Zhang, , M. Vaughan, , R. Marchand, , G. Stephens, , C. Trepte, , and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and S. G. Cober, 2004: Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer. J. Climate, 17, 37993813.

    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., , and B. H. Kahn, 2008: Limitations of bispectral infrared cloud phase determination and potential for improvement. J. Appl. Meteor. Climatol., 47, 28952910.

    • Search Google Scholar
    • Export Citation
  • Naud, C., , A. D. Del Genio, , and M. Bauer, 2006: Observational constraints on cloud thermodynamic phase in midlatitude storms. J. Climate, 19, 52735288.

    • Search Google Scholar
    • Export Citation
  • Pilewskie, P., , and S. Twomey, 1987: Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm. J. Atmos. Sci., 44, 34193420.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , B. A. Baum, , and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Poore, K., , J. H. Wang, , and W. B. Rossow, 1995: Cloud layer thicknesses from a combination of surface and upper-air observations. J. Climate, 8, 550568.

    • Search Google Scholar
    • Export Citation
  • Riedi, J., , M. Doutriaux-Boucher, , P. Goloub, , and P. Couvert, 2000: Global distribution of cloud top phase from POLDER/ADEOS-I. Geophys. Res. Lett., 27, 17071710.

    • Search Google Scholar
    • Export Citation
  • Riedi, J., , S. Platnick, , B. A. Baum, , F. Thieuleux, , C. Oudard, , F. Parol, , J.-M. Nicolas, , and P. Dubuisson, 2010: Cloud thermodynamic phase inferred from merged POLDER and MODIS data. Atmos. Chem. Phys., 10, 11 85111 865.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , A. W. Walker, , and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts. J. Climate, 6, 23942418.

  • Rotstayn, L., , B. Ryan, , and J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev., 128, 10701088.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research—A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2011: Clouds at Arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. J. Appl. Meteor. Climatol., 50, 645661.

    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., , S. A. Ackerman, , and W. P. Menzel, 1994: Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33, 212229.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , P. Yang, , B. A. Baum, , S. Platnick, , A. K. Heidinger, , Y. Hu, , and R. E. Holz, 2011: Retrieval of ice cloud optical thickness and effective particle size using a fast infrared radiative transfer model. J. Appl. Meteor. Climatol., 50, 22832297.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , P. Yang, , S. Platnick, , A. K. Heidinger, , B. A. Baum, , T. Greenwald, , Z. Zhang, , and R. E. Holz, 2013: Retrieval of ice cloud properties from AIRS and MODIS observations based on a fast high-spectral-resolution radiative transfer model. J. Appl. Meteor. Climatol., 52, 710726.

    • Search Google Scholar
    • Export Citation
  • Wang, J. H., , W. B. Rossow, , and Y. Zhang, 2000: Cloud vertical structure and its variations from a 20-yr global rawinsonde dataset. J. Climate, 13, 30413056.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , M. A. Vaughan, , A. Omar, , Y. Hu, , Z. L. K. A. Powell, , W. H. Hunt, , and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , H.-L. Wei, , B. A. Baum, , H.-L. Huang, , A. J. Heymsfield, , Y. X. Hu, , B.-C. Gao, , and D. D. Turner, 2003: The spectral signature of mixed-phase clouds composed of nonspherical ice crystals and spherical liquid droplets in the terrestrial window region. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 11711188.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 7
PDF Downloads 79 79 8

Evaluation of AIRS Cloud-Thermodynamic-Phase Determination with CALIPSO

View More View Less
  • 1 Key Laboratory for Semi-Arid Climate of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China, and Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 2 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
© Get Permissions
Restricted access

Abstract

Atmospheric Infrared Sounder (AIRS) infrared-based cloud-thermodynamic-phase retrievals are evaluated using the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud thermodynamic phase. The AIRS cloud phase is derived from spectral information contained within the 8–12-μm window, and CALIPSO provides coincident pixel-scale observations of cloud phase using the depolarization capability of the 532-nm channel. Comparisons are performed between the AIRS and CALIPSO cloud-phase observations for single-layer (48.5% of all clouds), heterogeneous-layer (45.9%), and multilayered (5.6%) clouds. The AIRS ice phase is in agreement with CALIPSO for more than 90% of coincident observations globally, with the largest discrepancies found in high latitudes and multilayered clouds. AIRS water phase generally follows CALIPSO spatial patterns, but the frequency is lower by about a factor of 2. The ice and water phases of AIRS both show misclassifications about 1% of the time when compared with CALIPSO. Not all clouds demonstrate strong phase signatures in the AIRS spectrum, which leads AIRS to classify unknown phase to around 10% of CALIPSO’s ice clouds and 60% of CALIPSO’s water clouds. This study shows that the algorithm is capable of detecting ice clouds within the AIRS field of view and can be used as the first step in further retrievals of ice-cloud optical thickness and effective particle size.

Corresponding author address: Dr. Hongchun Jin, Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China. E-mail: jinhch@lzu.edu.cn

Abstract

Atmospheric Infrared Sounder (AIRS) infrared-based cloud-thermodynamic-phase retrievals are evaluated using the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud thermodynamic phase. The AIRS cloud phase is derived from spectral information contained within the 8–12-μm window, and CALIPSO provides coincident pixel-scale observations of cloud phase using the depolarization capability of the 532-nm channel. Comparisons are performed between the AIRS and CALIPSO cloud-phase observations for single-layer (48.5% of all clouds), heterogeneous-layer (45.9%), and multilayered (5.6%) clouds. The AIRS ice phase is in agreement with CALIPSO for more than 90% of coincident observations globally, with the largest discrepancies found in high latitudes and multilayered clouds. AIRS water phase generally follows CALIPSO spatial patterns, but the frequency is lower by about a factor of 2. The ice and water phases of AIRS both show misclassifications about 1% of the time when compared with CALIPSO. Not all clouds demonstrate strong phase signatures in the AIRS spectrum, which leads AIRS to classify unknown phase to around 10% of CALIPSO’s ice clouds and 60% of CALIPSO’s water clouds. This study shows that the algorithm is capable of detecting ice clouds within the AIRS field of view and can be used as the first step in further retrievals of ice-cloud optical thickness and effective particle size.

Corresponding author address: Dr. Hongchun Jin, Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China. E-mail: jinhch@lzu.edu.cn
Save