• Ackerman, S. A., , W. L. Smith, , J. D. Spinhirne, , and H. E. Revercomb, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8–12-μm window. Mon. Wea. Rev., 118, 23772388.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , D. P. Kratz, , P. Yang, , S. Ou, , Y. Hu, , P. F. Soulen, , and S.-C. Tsay, 2000a: Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. I. Data and models. J. Geophys. Res., 105, 11 76711 780.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , P. F. Soulen, , K. I. Strabala, , M. D. King, , S. A. Ackerman, , W. P. Menzel, , and P. Yang, 2000b: Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. 2. Cloud thermodynamic phase. J. Geophys. Res., 105, 11 78111 792.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , P. Yang, , A. J. Heymsfield, , S. Platnick, , M. D. King, , Y.-X. Hu, , and S. T. Bedka, 2005: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911.

    • Search Google Scholar
    • Export Citation
  • Bikos, D., and Coauthors, 2012: Synthetic satellite imagery for real-time high-resolution model evaluation. Wea. Forecasting, 27, 784795.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., , and J.-P. Pinty, 2006: Evaluation of a cirrus parameterization with Meteosat Second Generation observations. Geophys. Res. Lett., 33, L03815, doi:10.1029/2005GL024725.

    • Search Google Scholar
    • Export Citation
  • Chen, T., , W. B. Rossow, , and Y. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286.

  • Chen, Y., , Y. Han, , and F. Weng, 2012: Comparison of two transmittance algorithms in the Community Radiative Transfer Model: Application to AVHRR. J. Geophys. Res., 117, D06206, doi:10.1029/2011JD016656.

    • Search Google Scholar
    • Export Citation
  • Daniels, J., , W. Bresky, , S. Wanzong, , C. Velden, , and H. Berger, 2012: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for derived motion winds. NOAA/NESDIS/Center for Satellite Applications and Research, 98 pp. [Available online at http://www.star.nesdis.noaa.gov/goesr/docs/ATBD/DMW.pdf.]

  • Dessler, A. E., , and P. Yang, 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16, 12411247.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Garand, L., , and S. Nadon, 1998: High-resolution satellite analysis and model evaluation of clouds and radiation over the Mackenzie basin using AVHRR data. J. Climate, 11, 19761996.

    • Search Google Scholar
    • Export Citation
  • Gehlot, S., , and J. Quaas, 2012: Convection–climate feedbacks in the ECHAM5 general circulation model: Evaluation of cirrus cloud life cycles with ISCCP satellite data from a Lagrangian trajectory perspective. J. Climate, 25, 52415259.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., , A. Huang, , J. Sieglaff, , and E. Olson, 2008: User’s manual to the Fast solar/infrared radiative transfer model. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, 23 pp. [Available online at http://cimss.ssec.wisc.edu/goes_r/awg/proxy/forward_model/SOLAR-IR_RT_MODEL_Users_Manual.pdf.]

  • Greenwald, T. J., , Y.-K. Lee, , J. A. Otkin, , and T. L’Ecuyer, 2010: Evaluation of midlatitude clouds in a large-scale high-resolution simulation using CloudSat observation. J. Geophys. Res., 115, D19203, doi:10.1029/2009JD013552.

    • Search Google Scholar
    • Export Citation
  • Han, M., , S. A. Braun, , T. Matsui, , and C. R. Williams, 2013: Evaluation of cloud microphysics schemes in simulations of a winter storm using radar and radiometer measurements. J. Geophys. Res., 118, 14011419, doi:10.1002/jgrd.50115.

    • Search Google Scholar
    • Export Citation
  • Han, Q., , W. Rossow, , R. Welch, , A. White, , and J. Chou, 1995: Validation of satellite retrievals of cloud microphysics and liquid water path using observations from FIRE. J. Atmos. Sci., 52, 41834195.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., , C. O’Dell, , R. Bennartz, , and T. Greenwald, 2006: The successive-order-of-interaction radiative transfer model. Part I: Model development. J. Appl. Meteor. Climatol., 45, 13881402.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , S. Matrosov, , and B. Baum, 2003: Ice water path–optical depth relationships for cirrus and deep stratiform ice cloud layers. J. Appl. Meteor., 42, 13691390.

    • Search Google Scholar
    • Export Citation
  • Holz, R., , A. Heidinger, , D. Turner, , S. Ackerman, , R. Kuehn, , M. Vaughn, , and S. Platnick, 2009: Uncertainties of cirrus OD retrievals from active and passive A-Train measurements. CloudSat/CALIPSO Science Workshop, Madison, WI, CIMMS/University of Wisconsin-Madison.

  • Holz, R., and Coauthors, 2011: Finding closure between V3 CALIOP and MODIS optical depth retrievals using IR observations. Abstracts, 2011 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A23F-03. [Available online at http://abstractsearch.agu.org/meetings/2011/FM/sections/A/sessions/A23F/abstracts/A23F-03.html.]

  • Jankov, I., and Coauthors, 2010: An evaluation of five ARW-WRF microphysics schemes using synthetic GOES imagery for an atmospheric river event affecting the California coast. J. Hydrometeor., 12, 618633.

    • Search Google Scholar
    • Export Citation
  • Keil, C., , A. Tafferner, , H. Mannstein, , and U. Schattler, 2003: Evaluating high-resolution model forecasts of European winter storms by use of satellite and radar observations. Wea. Forecasting, 18, 732747.

    • Search Google Scholar
    • Export Citation
  • Lee, Y.-K., , P. Yang, , Y. Hu, , B. A. Baum, , N. G. Loeb, , and B.-C. Gao, 2006: Potential nighttime contamination of CERES clear-sky fields of view by optically thin cirrus during the CRYSTAL-FACE campaign. J. Geophys. Res., 111, D09203, doi:10.1029/2005JD006372.

    • Search Google Scholar
    • Export Citation
  • Lee, Y.-K., , T. Greenwald, , P. Yang, , S. Ackerman, , and H.-L. Huang, 2010: Global distribution of instantaneous daytime radiative effects of high thin clouds observed by the cloud profiling radar. J. Appl. Remote Sens., 4, 043543, doi:10.1117/1.3491858.

    • Search Google Scholar
    • Export Citation
  • Lee, Y.-K., , Z. Li, , J. Li, , and T. J. Schmit, 2014: Evaluation of the GOES-R ABI LAP retrieval algorithm using the GOES-13 Sounder. J. Atmos. Oceanic Technol., 31, 319.

    • Search Google Scholar
    • Export Citation
  • Li, J., and Coauthors, 2012: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for legacy atmospheric moisture profile, legacy atmospheric temperature profile, total precipitable water, and derived atmospheric stability indices. NOAA/NESDIS/Center for Satellite Applications and Research, 108 pp. [Available online at http://www.star.nesdis.noaa.gov/goesr/docs/ATBD/LAP.pdf.]

  • Lopez, P., , K. Finkele, , P. Clark, , and P. Mascart, 2003: Validation and intercomparison of three FASTEX cloud systems: Comparison with coarse-resolution simulations. Quart. J. Roy. Meteor. Soc., 129, 18411871.

    • Search Google Scholar
    • Export Citation
  • McMillin, L. M., , X. Xiong, , Y. Han, , T. J. Kleespies, , and P. Van Delst, 2006: Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN 6 approach. Appl. Opt., 45, 20282034, doi:10.1364/AO.45.002028.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , W. L. Smith, , and T. R. Stewart, 1983: Improved cloud motion wind vector and altitude assignment using VAS. J. Appl. Meteor., 22, 377384.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , R. A. Frey, , and B. A. Baum, 2010: Cloud top properties and cloud phase algorithm theoretical basis document. NASA GSFC, 62 pp. [Available online at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod04.pdf.]

  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , and M. J. Iacono, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., 1991: Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperature. Mon. Wea. Rev., 119, 12051224.

    • Search Google Scholar
    • Export Citation
  • Nam, C. C. W., , and J. Quaas, 2012: Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. J. Climate, 25, 49754992.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., , and T. J. Greenwald, 2008: Comparison of WRF model-simulated and MODIS-derived cloud data. Mon. Wea. Rev., 136, 19571970.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., , H.-L. Huang, , T. Greenwald, , E. R. Olson, , and J. Sieglaff, 2007a: Large-scale WRF-simulated proxy atmospheric profile datasets used to support GOES-R research activities. Proc. 15th Conf. on Satellite Meteorology and Oceanography, Amsterdam, Netherlands, EUMETSAT–Amer. Meteor. Soc., 5 pp. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P50_S9_01_OTKIN_P&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Otkin, J. A., , D. J. Posselt, , E. R. Olson, , H.-L. Huang, , J. E. Davies, , J. Li, , and C. S. Velden, 2007b: Mesoscale numerical weather prediction models used in support of infrared hyperspectral measurements simulation and product algorithm development. J. Atmos. Oceanic Technol., 24, 585601.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., , T. J. Greenwald, , J. Sieglaff, , and H.-L. Huang, 2009: Validation of a large-scale simulated brightness temperature dataset using SEVIRI satellite observations. J. Appl. Meteor. Climatol., 48, 16131626.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , and B. A. Baum, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., , and Harshvardhan, 1988: Temperature dependence of cirrus extinction: Implications for climate feedback. J. Geophys. Res., 93, 11 05111 058.

    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., , J. M. Edwards, , and A. Slingo, 2003: Simulation of satellite channel radiances in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 11691190.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Inoue, , and H. Miura, 2010: Evaluation of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators. J. Geophys. Res., 115, D00H14, doi:10.1029/2009JD012247.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., , M. M. Gunshor, , W. P. Menzel, , J. Li, , S. Bachmeier, , and J. J. Gurka, 2005: Introducing the next-generation Advanced Baseline Imager (ABI) on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., , J. Li, , J. Li, , W. F. Feltz, , J. J. Gurka, , M. D. Goldberg, , and K. J. Schrab, 2008: The GOES-R Advanced Baseline Imager and the continuation of current sounder products. J. Appl. Meteor. Climatol., 47, 26962711.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and Coauthors, 2012: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for cloud and moisture imagery product (CMIP). NOAA/NESDIS/Center for Satellite Applications and Research, 63 pp. [Available online at http://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Imagery.pdf.]

  • Seemann, S. W., , E. E. Borbas, , R. O. Knuteson, , G. R. Stephenson, , and H.-L. Huang, 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47, 108123.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , W. Wang, , and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN–468+STR, 88 pp.

  • Strabala, K. I., , S. A. Ackerman, , and W. P. Menzel, 1994: Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33, 212229.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., , and L. Rikus, 2004: Validating model clouds and their optical properties using geostationary satellite imagery. Mon. Wea. Rev., 132, 20062020.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , P. R. Field, , R. M. Rasmussen, , and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., , and C. Jakob, 2002: Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution. J. Geophys. Res., 107, 4781, doi:10.1029/2002JD002259.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., , and W. P. Menzel, 1999: Eight years of high cloud statistics using HIRS. J. Climate, 12, 170184.

  • Yu, W., , M. Doutriaux, , G. Seze, , H. Le Treut, , and M. Desbois, 1996: A methodology study of the validation of clouds in GCMs using ISCCP satellite observation. Climate Dyn., 12, 389401.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , B. Rockel, , R. Stuhlmann, , R. Hollmann, , and U. Karstens, 2001: REMO cloud modeling: Improvements and validation with ISCCP DX data. J. Appl. Meteor., 40, 389408.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 4
PDF Downloads 6 6 3

Evaluating the Accuracy of a High-Resolution Model Simulation through Comparison with MODIS Observations

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

Synthetic infrared brightness temperatures (BTs) derived from a high-resolution Weather Research and Forecasting (WRF) model simulation over the contiguous United States are compared with Moderate Resolution Imaging Spectroradiometer (MODIS) observations to assess the accuracy of the model-simulated cloud field. A sophisticated forward radiative transfer model (RTM) is used to compute the synthetic MODIS observations. A detailed comparison of synthetic and real MODIS 11-μm BTs revealed that the model simulation realistically depicts the spatial characteristics of the observed cloud features. Brightness temperature differences (BTDs) computed for 8.5–11 and 11–12 μm indicate that the combined numerical model–RTM system realistically treats the radiative properties associated with optically thin cirrus clouds. For instance, much larger 11–12-μm BTDs occurred within thin clouds surrounding optically thicker, mesoscale cloud features. Although the simulated and observed BTD probability distributions for optically thin cirrus clouds had a similar range of positive values, the synthetic 11-μm BTs were much colder than observed. Previous studies have shown that MODIS cloud optical thickness values tend to be too large for thin cirrus clouds, which contributed to the apparent cold BT bias in the simulated thin cirrus clouds. Errors are substantially reduced after accounting for the observed optical thickness bias, which indicates that the thin cirrus clouds are realistically depicted during the model simulation.

Denotes Open Access content.

Corresponding author address: Yong-Keun Lee, CIMSS, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. E-mail: yklee@ssec.wisc.edu

Abstract

Synthetic infrared brightness temperatures (BTs) derived from a high-resolution Weather Research and Forecasting (WRF) model simulation over the contiguous United States are compared with Moderate Resolution Imaging Spectroradiometer (MODIS) observations to assess the accuracy of the model-simulated cloud field. A sophisticated forward radiative transfer model (RTM) is used to compute the synthetic MODIS observations. A detailed comparison of synthetic and real MODIS 11-μm BTs revealed that the model simulation realistically depicts the spatial characteristics of the observed cloud features. Brightness temperature differences (BTDs) computed for 8.5–11 and 11–12 μm indicate that the combined numerical model–RTM system realistically treats the radiative properties associated with optically thin cirrus clouds. For instance, much larger 11–12-μm BTDs occurred within thin clouds surrounding optically thicker, mesoscale cloud features. Although the simulated and observed BTD probability distributions for optically thin cirrus clouds had a similar range of positive values, the synthetic 11-μm BTs were much colder than observed. Previous studies have shown that MODIS cloud optical thickness values tend to be too large for thin cirrus clouds, which contributed to the apparent cold BT bias in the simulated thin cirrus clouds. Errors are substantially reduced after accounting for the observed optical thickness bias, which indicates that the thin cirrus clouds are realistically depicted during the model simulation.

Denotes Open Access content.

Corresponding author address: Yong-Keun Lee, CIMSS, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. E-mail: yklee@ssec.wisc.edu
Save