• Beardsley, R. C., , C. E. Dorman, , C. A. Friehe, , L. K. Rosenfeld, , and C. D. Winant, 1987: Local atmospheric forcing during the Coastal Ocean Dynamics Experiment: 1. A description of the marine boundary layer and atmospheric conditions over a northern California upwelling region. J. Geophys. Res., 92, 14671488, doi:10.1029/JC092iC02p01467.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., , and W. T. Thompson, 1996: The summertime low-level jet and marine boundary layer structure along the California coast. Mon. Wea. Rev., 124, 668686, doi:10.1175/1520-0493(1996)124<0668:TSLLJA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., , T. Haack, , and R. M. Samelson, 1999: Mesoscale simulation of supercritical, subcritical, and transcritical flow along coastal topography. J. Atmos. Sci., 56, 27802795, doi:10.1175/1520-0469(1999)056<2780:MSOSSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, Y., , J. R. Snider, , and P. Wechsler, 2013: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution. Atmos. Meas. Tech. Discuss, 6, 4123–4152, doi:10.5194/amtd-6-4123-2013.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., 1985: Evidence of Kelvin waves in California’s marine layer and related eddy generation. Mon. Wea. Rev., 113, 827839, doi:10.1175/1520-0493(1985)113<0827:EOKWIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., , and C. D. Winant, 2000: The marine layer in and around the Santa Barbara Channel. Mon. Wea. Rev., 128, 261282, doi:10.1175/1520-0493(2000)128<0261:TSAVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., , and D. Koračin, 2008: Response of the summer marine layer flow to an extreme California coastal bend. Mon. Wea. Rev., 136, 28942922, doi:10.1175/2007MWR2336.1.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., , D. P. Rogers, , W. Nuss, , and W. T. Thompson, 1999: Adjustment of the summer marine boundary layer around Point Sur, California. Mon. Wea. Rev., 127, 21432159, doi:10.1175/1520-0493(1999)127<2143:AOTSMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edwards, K. A., , A. M. Rogerson, , C. D. Winant, , and D. P. Rogers, 2001: Adjustment of the marine atmospheric boundary layer to a coastal cape. J. Atmos. Sci., 58, 15111528, doi:10.1175/1520-0469(2001)058<1511:AOTMAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haack, T., , S. D. Burk, , C. Dorman, , and D. Rodgers, 2001: Supercritical flow interaction within the Cape Blanco–Cape Mendocino orographic complex. Mon. Wea. Rev., 129, 688708, doi:10.1175/1520-0493(2001)129<0688:SFIWTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-M., , L.-Y. Oey, , W. Johnson, , C. Dorman, , and R. Hodur, 2007: Model wind over the central and southern California coastal ocean. Mon. Wea. Rev., 135, 19311944, doi:10.1175/MWR3389.1.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., , and C. E. Dorman, 2001: Marine atmospheric boundary divergence and clouds along California in June 1996. Mon. Wea. Rev., 129, 20402056, doi:10.1175/1520-0493(2001)129<2040:MABLDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., , C. E. Dorman, , and E. P. Deaver, 2004: Coastal perturbations of marine-layer winds, wind stress, and wind stress curl along California and Baja California in June 1999. J. Phys. Oceanogr., 34, 11521172, doi:10.1175/1520-0485(2004)034<1152:CPOMWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., , E. R. Miller, , and R. B. Friesen, 1991: A three-aircraft comparison of two types of air motion measurement systems. J. Atmos. Oceanic Technol., 8, 4150, doi:10.1175/1520-0426(1991)008<0041:ATAIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2000: Forcing of the summertime low-level jet along the California coast. J. Appl. Meteor., 39, 24212433, doi:10.1175/1520-0450(2000)039<2421:FOTSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , and D. Leon, 2013: Measurement of cloud perturbation pressures using an instrumented aircraft. J. Atmos. Oceanic Technol., 30, 215229, doi:10.1175/JTECH-D-12-00011.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , M. D. Burkhart, , and A. R. Rodi, 2007: Determination of the horizontal pressure gradient force using global positioning system onboard an instrumented aircraft. J. Atmos. Oceanic Technol., 24, 521528, doi:10.1175/JTECH1986.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , D. A. Rahn, , and D. Leon, 2013: Airborne observations of a Catalina eddy. Mon. Wea. Rev., 141, 3300–3313, doi:10.1175/MWR-D-13-00029.1.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., , and T. R. Parish, 2007: Diagnosis of the forcing and structure of the coastal jet near Cape Mendocino using in situ observations and numerical simulations. J. Appl. Meteor. Climatol, 46, 14551468, doi:10.1175/JAM2546.1.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., , and T. R. Parish, 2008: A study of the forcing of the 22–25 June 2006 coastally trapped wind reversal based on numerical simulations and aircraft observations. Mon. Wea. Rev., 136, 46874708, doi:10.1175/2008MWR2361.1.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., , and T. R. Parish, 2010: Cessation of the 22–25 June 2006 coastally trapped wind reversal. J. Appl. Meteor. Climatol., 49, 14121428, doi:10.1175/2010JAMC2242.1.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., , T. R. Parish, , and D. Leon, 2013: Airborne measurements of coastal jet transition around Point Conception, California. Mon. Wea. Rev., 141, 38273839, doi:10.1175/MWR-D-13-00030.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. P., and et al. , 1998: Highlights of Coastal Waves 1996. Bull. Amer. Meteor. Soc., 79, 13071326, doi:10.1175/1520-0477(1998)079<1307:HOCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Supercritical marine-layer flow along a smoothly varying coastline. J. Atmos. Sci., 49, 15711584, doi:10.1175/1520-0469(1992)049<1571:SMLFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., , and S. J. Lentz, 1994: The horizontal momentum balance in the marine atmospheric boundary layer during CODE-2. J. Atmos. Sci., 51, 37453757, doi:10.1175/1520-0469(1994)051<3745:THMBIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Skyllingstad, E. D., , P. Barbour, , and C. E. Dorman, 2001: The dynamics of northwest summer winds over the Santa Barbara Channel. Mon. Wea. Rev., 129, 10421061, doi:10.1175/1520-0493(2001)129<1042:TDONSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , P. Wechsler, , W. Kuestner, , J. French, , A. R. Rodi, , B. Glover, , M. Burkhart, , and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, doi:10.1364/OE.17.013576.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , J. French, , G. Vali, , and P. Wechsler, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Winant, C. D., , C. E. Dorman, , C. A. Friehe, , and R. C. Beardsley, 1988: The marine boundary layer off northern California: An example of supercritical channel flow. J. Atmos. Sci., 45, 35883605, doi:10.1175/1520-0469(1988)045<3588:TMLONC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zemba, J., , and C. A. Friehe, 1987: The marine boundary layer jet in the Coastal Ocean Dynamics Experiment. J. Geophys. Res., 92, 14891496, doi:10.1029/JC092iC02p01489.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , Y. Wang, , and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893512, doi:10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 2
PDF Downloads 13 13 1

Aircraft Observations of the Marine Boundary Layer Adjustment near Point Arguello, California

View More View Less
  • 1 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
  • | 2 Atmospheric Science Program, Department of Geography, University of Kansas, Lawrence, Kansas
  • | 3 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions
Restricted access

Abstract

Northerly winds set up by synoptic conditions are persistent in the marine boundary layer (MBL) off the California coast from late spring through summer. Wind, pressure, and MBL height are modulated as the low-level flow impinges on the points and capes along the California coast. The Precision Atmospheric Marine Boundary Layer Experiment was conducted in May and June of 2012 with the primary goal to directly measure the dynamics responsible for the wind field near Point Arguello and Point Conception. Detailed measurements of the horizontal pressure field within the MBL were made using the University of Wyoming King Air research aircraft. Airborne measurements made during cases of strong northerly wind show an abrupt adjustment of the MBL near Point Arguello, including a modulation of the horizontal pressure gradient force and a near collapse of the MBL. Airborne lidar measurements complement measurements of the horizontal pressure field and help to elucidate the large changes in the MBL height in the vicinity of Point Arguello. The Weather Research and Forecasting Model was used to simulate the 20 May 2012 case at a high resolution. Model results showed large-amplitude height perturbations near Point Arguello, similar to those observed from the airborne platform. In this case, the offshore flow played an important role in the local forcing.

Corresponding author address: Thomas R. Parish, Department of Atmospheric Science, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071. E-mail: parish@uwyo.edu

Abstract

Northerly winds set up by synoptic conditions are persistent in the marine boundary layer (MBL) off the California coast from late spring through summer. Wind, pressure, and MBL height are modulated as the low-level flow impinges on the points and capes along the California coast. The Precision Atmospheric Marine Boundary Layer Experiment was conducted in May and June of 2012 with the primary goal to directly measure the dynamics responsible for the wind field near Point Arguello and Point Conception. Detailed measurements of the horizontal pressure field within the MBL were made using the University of Wyoming King Air research aircraft. Airborne measurements made during cases of strong northerly wind show an abrupt adjustment of the MBL near Point Arguello, including a modulation of the horizontal pressure gradient force and a near collapse of the MBL. Airborne lidar measurements complement measurements of the horizontal pressure field and help to elucidate the large changes in the MBL height in the vicinity of Point Arguello. The Weather Research and Forecasting Model was used to simulate the 20 May 2012 case at a high resolution. Model results showed large-amplitude height perturbations near Point Arguello, similar to those observed from the airborne platform. In this case, the offshore flow played an important role in the local forcing.

Corresponding author address: Thomas R. Parish, Department of Atmospheric Science, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071. E-mail: parish@uwyo.edu
Save