• Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science,245, 1227–1230, doi:10.1126/science.245.4923.1227.

  • Andreae, M. O., , and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev., 89, 1341, doi:10.1016/j.earscirev.2008.03.001.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., , and M. Wetzel, 1997: Storm Peak Laboratory: A research, teaching, and service facility for the atmospheric sciences. Bull. Amer. Meteor. Soc., 78, 21152123.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., , D. H. Lowenthal, , and D. L. Mitchell, 2000: The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 25932602.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., , D. H. Lowenthal, , S. A. Cohn, , and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855.

    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., , and W. R. Cotton, 2014: On the buffering of CCN impacts on wintertime orographic clouds. Atmos. Res., 137,136–144.

  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, doi:10.1007/s00703-001-0584-9.

    • Search Google Scholar
    • Export Citation
  • EPA, cited 2012: 2005 National Emissions Inventory data and documentation. Environmental Protection Agency. [Available online at http://www.epa.gov/ttnchie1/net/2005inventory.html.]

  • Grell, G. A., , S. E. Peckham, , R. Schmitz, , S. A. McKeen, , G. Frost, , W. C. Skamarock, , and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 69576975.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., , T. Karl, , P. Harley, , C. Wiedinmyer, , P. I. Palmer, , and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 31813210.

    • Search Google Scholar
    • Export Citation
  • Hallar, A. G., , D. H. Lowenthal, , and G. Chirokova, , C. Wiedinmyer, , and R. D. Borys, 2011: Persistent daily new particle formation at a mountain-top location. Atmos. Environ., 45, 4111–4115, doi:10.1016/j.atmosenv.2011.04.044.

    • Search Google Scholar
    • Export Citation
  • Igel, A. L., , S. C. van den Heever, , C. M. Naud, , S. M. Saleeby, , and D. J. Posselt, 2013: Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations. J. Atmos. Sci.,70, 1768–1783.

  • Levin, E. J. T., and Coauthors, 2012: An annual cycle of size-resolved aerosol hygroscopicity at a forested site in Colorado. J. Geophys. Res., 117, D06201, doi:10.1029/2011JD016854.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., , and W. R. Cotton, 2009: Aerosol Pollution Impact on Precipitation. Springer, 386 pp.

  • Liao, H., , D. K. Henze, , J. H. Seinfeld, , S. Wu, , and L. J. Mickley, 2007: Biogenic secondary organic aerosol over the United States: Comparison of climatological simulations with observations. J. Geophys. Res., 112, D06201, doi:10.1029/2006JD007813.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., , A. Khain, , D. Rosenfeld, , and W. L. Woodley, 2007: Effects of precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., , T. Hashino, , L. Xue, , A. Teller, , U. Lohmann, , R. Rasmussen, , I. Geresdi, , and Z. Pan, 2010: Intercomparison of aerosol–cloud-precipitation interactions in stratiform orographic mixed-phase clouds. Atmos. Chem. Phys., 10, 8173–8196, doi:10.5194/acp-10-8173-2010.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., , and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19621971.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate,24, 3015–3048.

  • Rauber, R. M., 1986: Microphysical processes in two stably stratified orographic cloud systems. M.S. thesis, Atmospheric Science Paper 337, Dept. of Atmospheric Science, Colorado State University, 151 pp.

  • Rosenfeld, D., , and A. Givati, 2006: Evidence of orographic precipitation suppression by air pollution–induced aerosols in the western United States. J. Appl. Meteor. Climatol.,45, 893–911.

  • Rosenfeld, D., , W. L. Woodley, , D. Axisa, , E. Freud, , J. G. Hudson, , and A. Givati, 2008: Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada. J. Geophys. Res., 113, D15203, doi:10.1029/2007JD009544.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 19121929.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , and W. R. Cotton, 2005: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado winter snowfall event. J. Appl. Meteor.,44, 1912–1929.

  • Saleeby, S. M., , and W. R. Cotton, 2008: A binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol.,47, 694–703.

  • Saleeby, S. M., , W. R. Cotton, , D. Lowenthal, , R. D. Borys, , M. A. Wetzel, , I. McCubbin, , and M. Meyers, 2008: Simulated impacts of enhanced CCN and giant-CCN on orographic snowfall. Preprints, 13th Conf. on Mountain Meteorology, Whistler, BC, Canada, Amer. Meteor. Soc., P1.6. [Available online at https://ams.confex.com/ams/pdfpapers/141241.pdf.]

  • Saleeby, S. M., , W. R. Cotton, , D. Lowenthal, , R. D. Borys, , and M. A. Wetzel, 2009: Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteor. Climatol., 48, 903–922.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , W. R. Cotton, , and J. D. Fuller, 2011: The cumulative impact of cloud droplet nucleating aerosols on orographic snowfall in Colorado. J. Appl. Meteor., 50, 604625.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , W. Cotton, , D. Lowenthal, , and J. Messina, 2013: Aerosol impacts on the microphysical growth processes of orographic snowfall. J. Appl. Meteor. Climatol., 52, 834–852.

    • Search Google Scholar
    • Export Citation
  • Schichtel, B. A., , W. C. Malm, , G. Bench, , S. Fallon, , C. E. McDade, , J. C. Chow, , and J. G. Watson, 2008: Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States. J. Geophys. Res.,113, D02311, doi:10.1029/2007JD008605.

    • Search Google Scholar
    • Export Citation
  • Ward, D. S., , and W. R. Cotton, 2010: Cold and transition season cloud condensation nuclei measurements in western Colorado. Atmos. Chem. Phys., 11, 4303–4317, doi:10.5194/acp-11-4303-2011.

    • Search Google Scholar
    • Export Citation
  • Ward, D. S., , and W. R. Cotton, 2011: A method for forecasting CCN using predictions of aerosol physical and chemical properties from WRF/Chem. J. Appl. Meteor. Climatol., 50, 16011615.

    • Search Google Scholar
    • Export Citation
  • Ward, D. S., , T. Eidhammer, , W. R. Cotton, , and S. M. Kreidenweis, 2010: The role of the particle size distribution in assessing aerosol composition effects on simulated droplet activation. Atmos. Chem. Phys., 10, 54355447, doi:10.5194/acp-10-5435-2010.

    • Search Google Scholar
    • Export Citation
  • Xue, L., , A. Teller, , R. Rasmussen, , I. Geresdi, , Z. Pan, , and X. Liu, 2012: Effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation. J. Atmos. Sci., 69, 1994–2010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 8
PDF Downloads 17 17 1

The Effect of Pollution Aerosol on Wintertime Orographic Precipitation in the Colorado Rockies Using a Simplified Emissions Scheme to Predict CCN Concentrations

View More View Less
  • 1 Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

The impacts of enhanced CCN concentrations on various cloud and precipitation systems are potentially significant both to the large-scale climate system and local precipitation patterns. Precipitating stable orographic cloud systems are particularly susceptible to increases in CCN as parcel lifetimes within these clouds are typically short compared to clouds of similar depth. As such, even small perturbations to the precipitation efficiency within these clouds can have substantial impacts. In the mountainous regions of the western United States, where water resources are derived primarily from orographic precipitation during the cold season, this effect is of particular interest. The aims of this study are twofold. The first part is focused on the implementation of a simplified aerosol emissions scheme into the Regional Atmospheric Modeling System (RAMS). This scheme uses aerosol output from the Weather Research and Forecast Chemistry model (WRF-Chem) to initialize aerosol sources in RAMS. The second part of this study uses this scheme in the simulation of an orographic snow case that occurred in northwest Colorado during February 2007. The result of this study suggests that atmospheric CCN concentrations can be reasonably simulated using a simplified parameterization of aerosol emissions, despite a lack of explicit secondary aerosol (SA) within the model. Furthermore, the spatial and temporal variations in CCN predicted by this scheme produced a complicated response in the surface distribution of precipitation from the orographic snowstorm, a result not seen in studies where CCN concentrations are set to be horizontally homogenous.

Current affiliation: University at Albany, State University of New York, Albany, New York.

Corresponding author address: Ted Letcher, University at Albany, State University of New York, Albany, NY 12222. E-mail: tletcher@albany.edu

Abstract

The impacts of enhanced CCN concentrations on various cloud and precipitation systems are potentially significant both to the large-scale climate system and local precipitation patterns. Precipitating stable orographic cloud systems are particularly susceptible to increases in CCN as parcel lifetimes within these clouds are typically short compared to clouds of similar depth. As such, even small perturbations to the precipitation efficiency within these clouds can have substantial impacts. In the mountainous regions of the western United States, where water resources are derived primarily from orographic precipitation during the cold season, this effect is of particular interest. The aims of this study are twofold. The first part is focused on the implementation of a simplified aerosol emissions scheme into the Regional Atmospheric Modeling System (RAMS). This scheme uses aerosol output from the Weather Research and Forecast Chemistry model (WRF-Chem) to initialize aerosol sources in RAMS. The second part of this study uses this scheme in the simulation of an orographic snow case that occurred in northwest Colorado during February 2007. The result of this study suggests that atmospheric CCN concentrations can be reasonably simulated using a simplified parameterization of aerosol emissions, despite a lack of explicit secondary aerosol (SA) within the model. Furthermore, the spatial and temporal variations in CCN predicted by this scheme produced a complicated response in the surface distribution of precipitation from the orographic snowstorm, a result not seen in studies where CCN concentrations are set to be horizontally homogenous.

Current affiliation: University at Albany, State University of New York, Albany, New York.

Corresponding author address: Ted Letcher, University at Albany, State University of New York, Albany, NY 12222. E-mail: tletcher@albany.edu
Save