• Battaglia, A., , and J. Delanoë, 2013: Synergies and complementarities of CloudSat-CALIPSO snow observations. J. Geophys. Res. Atmos., 118, 721731, doi:10.1029/2012JD018092.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and et al. , 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 8386, doi:10.1038/nature12002.

    • Search Google Scholar
    • Export Citation
  • Bertolini, D., , M. Cassettari, , and G. Salvetti, 1982: The dielectric relaxation time of supercooled water. J. Chem. Phys., 76, 32853290, doi:10.1063/1.443323.

    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., , G. A. Isaac, , S. G. Cober, , and Q. Fu, 2004: Liquid fraction in stratiform mixed-phase clouds from in situ observations. Quart. J. Roy. Meteor. Soc., 130, 29192931, doi:10.1256/qj.03.153.

    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P., , and D. D. Turner, 2011: Evaluation of water permittivity models from ground-based observations of cold clouds at frequencies between 23 and 170 GHz. IEEE Trans. Geosci. Remote Sens., 49, 29993008, doi:10.1109/TGRS.2011.2121074.

    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P., , J. C. Liljegren, , and D. D. Turner, 2013: The Atmospheric Radiation Measurement (ARM) Program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech. Discuss., 6, 37233763, doi:10.5194/amtd-6-3723-2013.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., , and S. Van Gorder, 2013: On fitting a straight line to data when the “noise” in both variables is unknown. J. Atmos. Oceanic Technol., 30, 151158, doi:10.1175/JTECH-D-12-00067.1.

    • Search Google Scholar
    • Export Citation
  • Cole, K. S., , and R. H. Cole, 1941: Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys., 9, 341351, doi:10.1063/1.1750906.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., , and U. Löhnert, 2003: Accuracy of cloud liquid water path from ground-based microwave radiometry: 2. Sensor accuracy and strategy. Radio Sci., 38, 8042, doi:10.1029/2002RS002634.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., and et al. , 2008: The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concept and first results. Meteor. Z., 17, 849866, doi:10.1127/0941-2948/2008/0336.

    • Search Google Scholar
    • Export Citation
  • Debye, P., 1929: Polare Molekeln. Hirzel, 200 pp.

  • Ellison, W., 2006: Dielectric properties of natural media. Thermal Microwave Radiation: Applications for Remote Sensing, C. Mätzler, Ed., The Institution of Engineering and Technology, 431–455.

  • Ellison, W., 2007: Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C. J. Phys. Chem. Ref. Data, 36, 118, doi:10.1063/1.2360986.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., , and G. L. Stephens, 1995: Microwave radiative-transfer through clouds composed of realistically shaped ice crystals. Part II: Remote sensing of ice clouds. J. Atmos. Sci., 52, 20582072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, Y., , and E. R. Westwater, 2000: Analysis and improvement of tipping calibration for ground-based microwave radiometers. IEEE Trans. Geosci. Remote Sens., 38, 12601276, doi:10.1109/36.843018.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , L. M. Miloshevich, , A. Slingo, , K. Sassen, , and D. Starr, 1991: An observational and theoretical study of highly supercooled altocumulus. J. Atmos. Sci., 48, 923945, doi:10.1175/1520-0469(1991)048<0923:AOATSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., , M. P. Mittermaier, , and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, doi:10.1175/JAM2340.1.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., 2011: Characterization of snowfall using ground-based passive and active remote sensors. Ph.D. thesis, University of Cologne, 115 pp. [Available online at http://kups.ub.uni-koeln.de/4566/.]

  • Kneifel, S., , U. Löhnert, , A. Battaglia, , S. Crewell, , and D. Siebler, 2010: Snow scattering signals in ground-based passive microwave radiometer measurements. J. Geophys. Res.,115, D16214, doi:10.1029/2010JD013856.

  • Liebe, H. J., , G. H. Hufford, , and T. Manabe, 1991: A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millimeter Waves, 12, 659675, doi:10.1007/BF01008897.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., , G. H. Hufford, , and M. G. Cotton, 1993: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. Proc. AGARD, 542, 110.

  • Lipton, A. E., , M. K. Griffin, , and A. G. Ling, 1999: Microwave transfer model differences in remote sensing of cloud liquid water at low temperatures. IEEE Trans. Geosci. Remote Sens., 37, 620623, doi:10.1109/36.739129.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., , S. Kneifel, , A. Battaglia, , M. Hagen, , L. Hirsch, , and S. Crewell, 2011: A multisensor approach toward a better understanding of snowfall microphysics: The TOSCA project. Bull. Amer. Meteor. Soc., 92, 613628, doi:10.1175/2010BAMS2909.1.

    • Search Google Scholar
    • Export Citation
  • Mätzler, C., , and J. Morland, 2009: Refined physical retrieval of integrated water vapor and cloud liquid for microwave radiometer data. IEEE Trans. Geosci. Remote Sens., 47, 15851594, doi:10.1109/TGRS.2008.2006984.

    • Search Google Scholar
    • Export Citation
  • Mätzler, C., , P. W. Rosenkranz, , and J. Cermak, 2010: Microwave absorption of supercooled clouds and implications for the dielectric properties of water. J. Geophys. Res.,115, D23208, doi:10.1029/2010JD014283.

  • Meissner, T., , and F. J. Wentz, 2004: The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens., 42,18361849, doi:10.1109/TGRS.2004.831888.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. de Boer, , G. Feingold, , J. Harrington, , M. D. Shupe, , and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Search Google Scholar
    • Export Citation
  • Payne, V. H., , E. J. Mlawer, , K. E. Cady-Pereira, , and J.-L. Moncet, 2011: Water vapor continuum absorption in the microwave. IEEE Trans. Geosci. Remote Sens., 49, 21942208, doi:10.1109/TGRS.2010.2091416.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11, 18361844, doi:10.1364/AO.11.001836.

  • Ronne, C., , L. Thrane, , P. Astrand, , A. Wallqvist, , K. V. Mikkelsen, , and S. R. Keiding, 1997: Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. J. Chem. Phys., 107, 53195331, doi:10.1063/1.474242.

    • Search Google Scholar
    • Export Citation
  • Rose, T., , S. Crewell, , U. Löhnert, , and C. Simmer, 2005: A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere. Atmos. Res., 75, 183200, doi:10.1016/j.atmosres.2004.12.005.

    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33, 919928, doi:10.1029/98RS01182.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2011: Clouds at Arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. J. Appl. Meteor. Climatol., 50, 645661, doi:10.1175/2010JAMC2468.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and et al. , 2013: High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bull. Amer. Meteor. Soc., 94, 169186, doi:10.1175/BAMS-D-11-00249.1.

    • Search Google Scholar
    • Export Citation
  • Stogryn, A. P., , H. T. Bull, , K. Rubayi, , and S. Iravanchy, 1995: The microwave permittivity of sea and fresh water. Aerojet Internal Rep., GenCorp Aerojet, Azusa, CA, 24 pp.

  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444, doi:10.1175/JAM2208.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and et al. , 2007: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc., 88, 177190, doi:10.1175/BAMS-88-2-177.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., , U. Löhnert, , M. Cadeddu, , S. Crewell, , and A. Vogelmann, 2009: Modifications to the water vapor continuum in the microwave suggested by ground-based 150 GHz observations. IEEE Trans. Geosci. Remote Sens., 47, 33263337, doi:10.1109/TGRS.2009.2022262.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., , R. K. Moore, , and A. K. Fung, 1986: From Theory to Applications, Vol. 3, Microwave Remote Sensing: Active and Passive, Artech House, 1120 pp.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and et al. , 2008: The Convective and Orographically Induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 14771486, doi:10.1175/2008BAMS2367.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 5
PDF Downloads 22 22 0

Absorption Properties of Supercooled Liquid Water between 31 and 225 GHz: Evaluation of Absorption Models Using Ground-Based Observations

View More View Less
  • 1 Hans Ertel Centre for Weather Research, Climate Monitoring Branch, University of Cologne, Cologne, Germany
  • | 2 Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
  • | 3 Argonne National Laboratory, Argonne, Illinois
  • | 4 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 5 Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan
© Get Permissions
Restricted access

Abstract

Microwave radiometers (MWR) are commonly used to quantify the amount of supercooled liquid water (SLW) in clouds; however, the accuracy of the SLW retrievals is limited by the poor knowledge of the SLW dielectric properties at microwave frequencies. Six liquid water permittivity models were compared with ground-based MWR observations between 31 and 225 GHz from sites in Greenland, the German Alps, and a low-mountain site; average cloud temperatures of observed thin cloud layers range from 0° to −33°C. A recently published method to derive ratios of liquid water opacity from different frequencies was employed in this analysis. These ratios are independent of liquid water path and equal to the ratio of αL at those frequencies that can be directly compared with the permittivity model predictions. The observed opacity ratios from all sites show highly consistent results that are generally within the range of model predictions; however, none of the models are able to approximate the observations over the entire frequency and temperature range. Findings in earlier published studies were used to select one specific model as a reference model for αL at 90 GHz; together with the observed opacity ratios, the temperature dependence of αL at 31.4, 52.28, 150, and 225 GHz was derived. The results reveal that two models fit the opacity ratio data better than the other four models, with one of the two models fitting the data better for frequencies below 90 GHz and the other for higher frequencies. These findings are relevant for SLW retrievals and radiative transfer in the 31–225-GHz frequency region.

Corresponding author address: Stefan Kneifel, Institute for Geophysics and Meteorology, University of Cologne, Pohligstrasse 3, 50969 Cologne, Germany. E-mail: skneifel@meteo.uni-koeln.de

Abstract

Microwave radiometers (MWR) are commonly used to quantify the amount of supercooled liquid water (SLW) in clouds; however, the accuracy of the SLW retrievals is limited by the poor knowledge of the SLW dielectric properties at microwave frequencies. Six liquid water permittivity models were compared with ground-based MWR observations between 31 and 225 GHz from sites in Greenland, the German Alps, and a low-mountain site; average cloud temperatures of observed thin cloud layers range from 0° to −33°C. A recently published method to derive ratios of liquid water opacity from different frequencies was employed in this analysis. These ratios are independent of liquid water path and equal to the ratio of αL at those frequencies that can be directly compared with the permittivity model predictions. The observed opacity ratios from all sites show highly consistent results that are generally within the range of model predictions; however, none of the models are able to approximate the observations over the entire frequency and temperature range. Findings in earlier published studies were used to select one specific model as a reference model for αL at 90 GHz; together with the observed opacity ratios, the temperature dependence of αL at 31.4, 52.28, 150, and 225 GHz was derived. The results reveal that two models fit the opacity ratio data better than the other four models, with one of the two models fitting the data better for frequencies below 90 GHz and the other for higher frequencies. These findings are relevant for SLW retrievals and radiative transfer in the 31–225-GHz frequency region.

Corresponding author address: Stefan Kneifel, Institute for Geophysics and Meteorology, University of Cologne, Pohligstrasse 3, 50969 Cologne, Germany. E-mail: skneifel@meteo.uni-koeln.de
Save