• Balme, M., , T. Vischel, , T. Lebel, , C. Peugeot, , and S. Galle, 2006: Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff: Part 1: Rainfall variability analysis. J. Hydrol., 331, 336348, doi:10.1016/j.jhydrol.2006.05.020.

    • Search Google Scholar
    • Export Citation
  • Berne, A., , and W. F. Krajewski, 2013: Radar for hydrology: Unfulfilled promise or unrecognized potential? Adv. Water Resour., 51, 357366, doi:10.1016/j.advwatres.2012.05.005.

    • Search Google Scholar
    • Export Citation
  • Buytaert, W., , R. Celleri, , P. Willems, , B. D. Bièvre, , and G. Wyseure, 2006: Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol., 329, 413421, doi:10.1016/j.jhydrol.2006.02.031.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., , J. D. Tuttle, , D. A. Ahijevych, , and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changjiang Water Resources Commission, 1997: Hydrology Research for Three Gorges Project (in Chinese). Hubei Science and Technology Press, 313 pp.

  • Ciach, G. J., , and W. F. Krajewski, 2006: Analysis and modeling of spatial correlation structure in small-scale rainfall in central Oklahoma. Adv. Water Resour., 29, 14501463, doi:10.1016/j.advwatres.2005.11.003.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., , and A. G. Slater, 2006: Probabilistic quantitative precipitation estimation in complex terrain. J. Hydrometeor., 7, 322, doi:10.1175/JHM474.1.

    • Search Google Scholar
    • Export Citation
  • Daly, C., , R. P. Neilson, , and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delrieu, G., , B. Boudevillain, , J. Nicol, , B. Chapon, , P. E. Kirstetter, , H. Andrieu, , and D. Faure, 2009: Bollène-2002 Experiment: Radar quantitative precipitation estimation in the Cévennes–Vivarais region, France. J. Appl. Meteor. Climatol., 48, 14221447, doi:10.1175/2008JAMC1987.1.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., , and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, doi:10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , J. E. Janowiak, , and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Foufoula-Georgiou, E., , and V. Vuruputur, 2001: Patterns and organization in precipitation. Spatial Patterns in Catchment Hydrology: Observations and Modelling, R. Grayson and G. Blöschl, Eds., Cambridge University Press, 82–104.

  • Germann, U., , G. Galli, , M. Boscacci, , and M. Bolliger, 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692, doi:10.1256/qj.05.190.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., , D. P. Jorgensen, , S. Y. Matrosov, , and Z. L. Flamig, 2009: Evaluation of incremental improvements to quantitative precipitation estimates in complex terrain. J. Hydrometeor., 10, 15071520, doi:10.1175/2009JHM1125.1.

    • Search Google Scholar
    • Export Citation
  • Gupta, R., , V. Venugopal, , and E. Foufoula-Georgiou, 2006: A methodology for merging multisensor precipitation estimates based on expectation-maximization and scale-recursive estimation. J. Geophys. Res., 111, D02102, doi:10.1029/2004JD005568.

    • Search Google Scholar
    • Export Citation
  • Haile, A. T., , T. Rientjes, , A. Gieske, , and M. Gebremichael, 2009: Rainfall variability over mountainous and adjacent lake areas: The case of Lake Tana basin at the source of the Blue Nile River. J. Appl. Meteor. Climatol., 48, 16961717, doi:10.1175/2009JAMC2092.1.

    • Search Google Scholar
    • Export Citation
  • Harris, D., , E. Foufoula-Georgiou, , K. Droegemeier, , and T. Levit, 2001: Multiscale statistical properties of a high-resolution precipitation forecast. J. Hydrometeor., 2, 406418, doi:10.1175/1525-7541(2001)002<0406:MSPOAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heistermann, M., , and D. Kneis, 2011: Benchmarking quantitative precipitation estimation by conceptual rainfall-runoff modeling. Water Resour. Res., 47, W06514, doi:10.1029/2010WR009153.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , R. Adler, , and G. Huffman, 2006: Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys. Res. Lett., 33, L22402, doi:10.1029/2006GL028010.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , D. Gochis, , J. Cheng, , K. Hsu, , and S. Sorooshian, 2007: Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeor., 8, 469482, doi:10.1175/JHM574.1.

    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., , W. F. Krajewski, , and C. B. Young, 2004: Radar beam occultation studies using GIS and DEM technology: An example study of Guam. J. Atmos. Oceanic Technol., 21, 9951006, doi:10.1175/1520-0426(2004)021<0995:RBOSUG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, M., , D. Yang, , J. Chen, , and S. S. Hubbard, 2012: Calibration of a distributed flood forecasting model with input uncertainty using a Bayesian framework. Water Resour. Res., 48, W08510, doi:10.1029/2010WR010062.

    • Search Google Scholar
    • Export Citation
  • Li, Z., , D. Yang, , and F. Tian, 2013: Flood forecast of the Yangtze Three Gorges region based on ground-observed rainfall (in Chinese). J. Hydrol. Eng., 32, 4449.

    • Search Google Scholar
    • Export Citation
  • Miller, N. L., , J. M. Jin, , and C.-F. Tsang, 2005: Local climate sensitivity of the Three Gorges Dam. Geophys. Res. Lett., 32, L16704, doi:10.1029/2005GL022821.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., , and P. Coulibaly, 2009: Developments in hydrometric network design: A review. Rev. Geophys., 47, RG2001, doi:10.1029/2007RG000243.

    • Search Google Scholar
    • Export Citation
  • Morin, E., , D. C. Goodrich, , R. A. Maddox, , X. Gao, , H. V. Gupta, , and S. Sorooshian, 2006: Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response. Adv. Water Resour., 29, 843860, doi:10.1016/j.advwatres.2005.07.014.

    • Search Google Scholar
    • Export Citation
  • Nicótina, L., , E. Alessi Celegon, , A. Rinaldo, , and M. Marani, 2008: On the impact of rainfall patterns on the hydrologic response. Water Resour. Res., 44, W12401, doi:10.1029/2007WR006654.

    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., , and D. Koutsoyiannis, 2012: Entropy based derivation of probability distributions: A case study to daily rainfall. Adv. Water Resour., 45, 5157, doi:10.1016/j.advwatres.2011.11.007.

    • Search Google Scholar
    • Export Citation
  • Qi, Y., , J. Zhang, , and P. Zhang, 2013: A real-time automated convective and stratiform precipitation segregation algorithm in native radar coordinates. Quart. J. Roy. Meteor. Soc., 139B, 22332240, doi:10.1002/qj.2095.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., , B. F. dePower, , and J. B. Valdés, 1987: Rectangular pulses point process models for rainfall: Analysis of empirical data. J. Geophys. Res., 92, 96459656, doi:10.1029/JD092iD08p09645.

    • Search Google Scholar
    • Export Citation
  • Shrestha, R., , P. R. Houser, , and V. G. Anantharaj, 2011: An optimal merging technique for high-resolution precipitation products. J. Adv. Model. Earth Syst., 3, M12003, doi:10.1029/2011MS000062.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , and W. F. Krajewski, 1991: Estimation of the mean field bias of radar rainfall estimates. J. Appl. Meteor., 30, 397412, doi:10.1175/1520-0450(1991)030<0397:EOTMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., and et al. , 2011: Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Amer. Meteor. Soc., 92, 13531357, doi:10.1175/2011BAMS3158.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C. C., , G. T. J. Chen, , and R. E. Carbone, 2004: A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 132, 16061629, doi:10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winchell, M., , H. V. Gupta, , and S. Sorooshian, 1998: On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation. Water Resour. Res., 34, 26552670, doi:10.1029/98WR02009.

    • Search Google Scholar
    • Export Citation
  • Wu, H., , R. F. Adler, , Y. Hong, , Y. Tian, , and F. Policelli, 2012: Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeor., 13, 12681284, doi:10.1175/JHM-D-11-087.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , Q. Zhang, , and Z. Jiang, 2006: Three Gorges Dam affects regional precipitation. Geophys. Res. Lett., 33, L13806, doi:10.1029/2006GL026780.

    • Search Google Scholar
    • Export Citation
  • Xiao, C., , R. Yu, , and Y. Fu, 2010: Precipitation characteristics in the Three Gorges Dam vicinity. Int. J. Climatol., 30, 20212024, doi:10.1002/joc.1963.

    • Search Google Scholar
    • Export Citation
  • Young, C. B., , B. R. Nelson, , A. A. Bradley, , J. A. Smith, , C. D. Peters-Lidard, , A. Kruger, , and M. L. Baeck, 1999: An evaluation of NEXRAD precipitation estimates in complex terrain. J. Geophys. Res., 104, 19 69119 703, doi:10.1029/1999JD900123.

    • Search Google Scholar
    • Export Citation
  • Yu, R., , T. Zhou, , A. Xiong, , Y. Zhu, , and J. Li, 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi:10.1029/2006GL028129.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and et al. , 2011: National Mosaic and Multi-Sensor QPE (NMQ) System: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , Y. Qi, , D. Kingsmill, , and K. Howard, 2012: Radar-based quantitative precipitation estimation for the cool season in complex terrain: Case studies from the NOAA Hydrometeorology Testbed. J. Hydrometeor., 13, 18361854, doi:10.1175/JHM-D-11-0145.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , S. Zhang, , and Z. Wang, 1999: Analysis on the storm and flood at Yangtze Three Gorges region (in Chinese). Yangtze River, 30, 1213.

    • Search Google Scholar
    • Export Citation
  • Zhao, F., , and M. Shepherd, 2012: Precipitation changes near Three Gorges Dam, China. Part I: A spatiotemporal validation analysis. J. Hydrometeor., 13, 735745, doi:10.1175/JHM-D-11-061.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, F., , H. Deng, , and X. Zhao, 2010: Rainfall regime in Three Gorges area in China and the control factors. Int. J. Climatol., 30, 13961406, doi:10.1002/joc.1978.

    • Search Google Scholar
    • Export Citation
  • Zhou, M., , F. Tian, , U. Lall, , and H. Hu, 2011: Insights from a joint analysis of Indian and Chinese monsoon rainfall data. Hydrol. Earth Syst. Sci., 15, 27092715, doi:10.5194/hess-15-2709-2011.

    • Search Google Scholar
    • Export Citation
  • Zhuo, H., , P. Zhao, , and T. Zhou, 2014: Diurnal cycle of summer rainfall in Shandong of eastern China. Int. J. Climatol., 34, 742750, doi:10.1002/joc.3718.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 9
PDF Downloads 55 55 3

Characterizing Spatiotemporal Variations of Hourly Rainfall by Gauge and Radar in the Mountainous Three Gorges Region

View More View Less
  • 1 State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
  • | 2 Hydrometeorology and Remote Sensing Laboratory, Department of Civil Engineering and Environmental Science, University of Oklahoma, and Advanced Radar Research Center, National Weather Center, Norman, Oklahoma
  • | 3 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 4 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma, and College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

Understanding spatiotemporal rainfall patterns in mountainous areas is of great importance for prevention of natural disasters such as flash floods and landslides. There is little knowledge about rainfall variability over historically underobserved complex terrains, however, and especially about the variations of hourly rainfall. In this study, the spatiotemporal variations of hourly rainfall in the Three Gorges region (TGR) of China are investigated with gauge and newly available radar data. The spatial pattern of hourly rainfall has been examined by a number of statistics, and they all show that the rainfall variations are time-scale and location dependent. In general, the northern TGR receives more-intense and longer-duration rainfall than do other parts of the TGR, and short-duration storms could occur in most of the TGR. For temporal variations, the summer diurnal cycle shifts from a morning peak in the west to a late-afternoon peak in the east while a mixed pattern of two peaks exists in the middle. In statistical terms, empirical model–based estimation indicates that the correlation scale of hourly rainfall is about 40 km. Further investigation shows that the correlation distance varies with season, from 30 km in the warm season to 60 km in the cold season. In addition, summer rainstorms extracted from radar rainfall data are characterized by short duration (6–8 h) and highly localized patterns (5–17 and 13–36 km in the minor and major directions, respectively). Overall, this research provides quantitative information about the rainfall regime in the TGR and shows that the combination of gauge and radar data is useful for characterizing the spatiotemporal pattern of storm rainfall over complex terrain.

Corresponding author address: Dawen Yang, Rm. 312, New Hydraulic Engineering Bldg., Dept. of Hydraulic Engineering, Tsinghua University, Beijing 100084, China. E-mail: yangdw@tsinghua.edu.cn

Abstract

Understanding spatiotemporal rainfall patterns in mountainous areas is of great importance for prevention of natural disasters such as flash floods and landslides. There is little knowledge about rainfall variability over historically underobserved complex terrains, however, and especially about the variations of hourly rainfall. In this study, the spatiotemporal variations of hourly rainfall in the Three Gorges region (TGR) of China are investigated with gauge and newly available radar data. The spatial pattern of hourly rainfall has been examined by a number of statistics, and they all show that the rainfall variations are time-scale and location dependent. In general, the northern TGR receives more-intense and longer-duration rainfall than do other parts of the TGR, and short-duration storms could occur in most of the TGR. For temporal variations, the summer diurnal cycle shifts from a morning peak in the west to a late-afternoon peak in the east while a mixed pattern of two peaks exists in the middle. In statistical terms, empirical model–based estimation indicates that the correlation scale of hourly rainfall is about 40 km. Further investigation shows that the correlation distance varies with season, from 30 km in the warm season to 60 km in the cold season. In addition, summer rainstorms extracted from radar rainfall data are characterized by short duration (6–8 h) and highly localized patterns (5–17 and 13–36 km in the minor and major directions, respectively). Overall, this research provides quantitative information about the rainfall regime in the TGR and shows that the combination of gauge and radar data is useful for characterizing the spatiotemporal pattern of storm rainfall over complex terrain.

Corresponding author address: Dawen Yang, Rm. 312, New Hydraulic Engineering Bldg., Dept. of Hydraulic Engineering, Tsinghua University, Beijing 100084, China. E-mail: yangdw@tsinghua.edu.cn
Save