• Baum, B. A., and Coauthors, 1997: Imager clear-sky determination and cloud detection (subsystem 4.1). CERES Algorithm Theoretical Basis Document (ATBD Release 2.2), NASA/RP-1376, 44 pp. [Available online at http://ceres.larc.nasa.gov/atbd.php.]

  • Bloom, S. A., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) Data Assimilation System—Version 4. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2005-104606, Vol. 26, 187 pp.

  • Bodhaine, B. A., , N. B. Wood, , E. G. Dutton, , and J. R. Slusser, 1999: On Rayleigh optical depth calculations. J. Atmos. Oceanic Technol., 16, 18541861.

    • Search Google Scholar
    • Export Citation
  • Chambers, L. H., , D. F. Young, , P. K. Costulis, , P. T. Detweiler, , J. D. Fischer, , R. Sepulveda, , D. S. Stoddard, , and A. Falcone, 2003: The CERES S’COOL project. Bull. Amer. Meteor. Soc., 86, 759765.

    • Search Google Scholar
    • Export Citation
  • Colbo, K., , and R. A. Weller, 2009: Accuracy of the IMET package in the subtropics. J. Atmos. Oceanic Technol., 26, 18671890.

  • Collins, W. D., , P. J. Rasch, , B. E. Eaton, , B. V. Khattatov, , J.-F. Lamarque, , and C. S. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106, 73137336, doi:10.1029/2000JD900507.

    • Search Google Scholar
    • Export Citation
  • Darnell, W. L., , W. F. Staylor, , S. K. Gupta, , and F. M. Denn, 1988: Estimation of surface insolation using sun-synchronous satellite data. J. Climate, 1, 820835.

    • Search Google Scholar
    • Export Citation
  • Darnell, W. L., , W. F. Staylor, , S. K. Gupta, , N. A. Ritchey, , and A. C. Wilber, 1992: Seasonal variation of surface radiation budget derived from ISCCP-C1 data. J. Geophys. Res., 97, 15 74115 760.

    • Search Google Scholar
    • Export Citation
  • Deepak, A., , and H. E. Gerber, Eds., 1983: Report of the Experts Meeting on Aerosols and Their Climatic Effects. WCP-55, World Meteorological Organization, 107 pp.

  • Fasullo, J. T., , and K. E. Trenberth, 2008a: The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Climate, 21, 22972312.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., , and K. E. Trenberth, 2008b: The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Climate, 21, 23132325.

    • Search Google Scholar
    • Export Citation
  • Gautier, C., , and M. Landsfeld, 1997: Surface solar radiation flux and cloud radiative forcing for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP): A satellite, surface observations, and radiative transfer model study. J. Atmos. Sci., 54, 12891307.

    • Search Google Scholar
    • Export Citation
  • GCOS, 2003: The second report on the adequacy of the global observing system for climate in support of the UNFCCC. Global Climate Observing System GCOS-82, WMO/TD No. 1143, 85 pp.

  • Gupta, S. K., 1989: A parameterization for longwave surface radiation from sun-synchronous satellite data. J. Climate, 2, 305320.

  • Gupta, S. K., , W. L. Darnell, , and A. C. Wilber, 1992: A parameterization for longwave surface radiation from satellite data: Recent improvements. J. Appl. Meteor., 31, 13611367.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., , N. A. Ritchey, , A. C. Wilber, , C. H. Whitlock, , G. G. Gibson, , and P. W. Stackhouse, 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12, 26912710.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., , D. P. Kratz, , P. W. Stackhouse Jr., , and A. C. Wilber, 2001: The Langley Parameterized Shortwave Algorithm (LPSA) for surface radiation budget studies (version 1.0). NASA/TP-2001-211272, 31 pp.

  • Gupta, S. K., , D. P. Kratz, , A. C. Wilber, , and L. C. Nguyen, 2004: Validation of parameterized algorithms used to derive TRMM-CERES surface radiative fluxes. J. Atmos. Oceanic Technol., 21, 742752.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., , D. P. Kratz, , P. W. Stackhouse Jr., , A. C. Wilber, , T. Zhang, , and V. E. Sothcott, 2010: Improvement of surface longwave flux algorithms used in CERES processing. J. Appl. Meteor. Climatol., 49, 15791589.

    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 15501568.

  • Henderson, D. S., , T. L’Ecuyer, , G. Stephens, , P. Partain, , and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol, 52, 853871.

    • Search Google Scholar
    • Export Citation
  • Hudson, S. R., , and R. E. Brandt, 2005: A look at the surface-based temperature inversion on the Antarctic Plateau. J. Climate, 18, 16731696.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , T. L’Ecuyer, , A. Gettelman, , G. Stephens, , and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Key, J. R., , X. Wang, , J. C. Stoeve, , and C. Fowler, 2001: Estimating the cloudy-sky albedo of sea ice and snow from space. J. Geophys. Res., 106, 12 48912 497.

    • Search Google Scholar
    • Export Citation
  • Kopp, G., , and J. Lean, 2011: A new, lower value of the total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, doi:10.1029/2010GL045777.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., , and R. D. Cess, 1985: Solar absorption by atmospheric water vapor: A comparison of radiation models. Tellus, 37B, 5363.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., , S. K. Gupta, , A. C. Wilber, , and V. E. Sothcott, 2010: Validation of the CERES edition 2B surface-only flux algorithm. J. Appl. Meteor. Climatol, 49, 164180.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., , and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth’s atmosphere. J. Atmos. Sci., 31, 118133.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , N. B. Wood, , T. Haladay, , G. L. Stephens, , and P. W. Stackhouse Jr., 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , S. Kato, , K. Loukachine, , and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , S. Kato, , K. Loukachine, , N. Manalo-Smith, , and D. R. Doelling, 2007: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part II: Validation. J. Atmos. Oceanic Technol., 24, 564584.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., , B. C. Reed, , J. F. Brown, , D. O. Ohlen, , Z. Zhu, , L. Yang, , and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008: Cloud detection in non-polar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., 46, 38573884, doi:10.1109/TGRS.2008.2001351.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011a: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011b: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., 49, 44014430, doi:10.1109/TGRS.2011.2144602.

    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., and Coauthors, 2006: First light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument. Geophys. Res. Lett., 33, L07704, doi:10.1029/2005GL025114.

    • Search Google Scholar
    • Export Citation
  • Moser, W., , and E. Raschke, 1984: Incident solar radiation over Europe estimated from METEOSAT data. J. Climate Appl. Meteor., 23, 166170.

    • Search Google Scholar
    • Export Citation
  • Parding, K., , L. Hinkleman, , T. P. Ackerman, , and S. A. McFarlene, 2011: Shortwave absorptance in a tropical cloudy atmosphere: Reconciling calculations and observations. J. Geophys. Res., 116, D19202, doi:10.1029/2011JD015639.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , B. A. Baum, , J. C. Riédi, , and R. A. Frey, 2003: The MODIS cloud products: Algorithm and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Priestley, K. J., , S. Thomas, , and G. L. Smith, 2010: Validation of point spread functions of CERES radiometers by the use of lunar observations. J. Atmos. Oceanic Technol., 27, 10051011.

    • Search Google Scholar
    • Export Citation
  • Priestley, K. J., and Coauthors, 2011: Radiometric performance of the CERES Earth radiation budget climate remote sensors on the EOS Aqua and Terra spacecraft through April 2007. J. Atmos. Oceanic Technol., 28, 321.

    • Search Google Scholar
    • Export Citation
  • Ramsay, B. H., 1998: The interactive multisensory snow and ice mapping system. Hydrol. Processes, 12, 15371546.

  • Rasch, P. J., , N. M. Mahowald, , and B. E. Eaton, 1997: Representations of transport, convection, and hydrologic cycle in chemical transport models: Implications for the modeling of short-lived and soluble species. J. Geophys. Res., 102, 28 12728 138.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2008-104606, Vol. 27, 101 pp.

  • Rossow, W. B., , and Y.-C. Zhang, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets 2. Validation and first results. J. Geophys. Res., 100, 11671197.

    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., , F. G. Rose, , N. M. Smith, , and T. P. Charlock, 2001: Validation data set for CERES surface and atmospheric radiation budget (SARB). WCRP/GEWEX News, No. 11 (1), International GEWEX Project Office, Silver Spring, MD, 11–12. [Data available online at http://www-cave.larc.nasa.gov/.]

  • Salomonson, V. V., , W. L. Barnes, , P. W. Maymon, , H. E. Montgomery, , and H. Ostrow, 1989: MODIS—Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145153.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., , S. K. Gupta, , S. J. Cox, , T. Zhang, , J. C. Mikovitz, , and L. M. Hinkleman, 2011: The NASA/GEWEX Surface Radiation Budget release 3.0: 24.5-year dataset. GEWEX News, No. 21 (1), International GEWEX Project Office, Silver Spring, MD, 1012.

  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., , and G. Ohring, 1986: Surface radiation budget for climate applications. NASA Ref. Publ. 1169, 132 pp.

  • Whitlock, C. H., and Coauthors, 1995: First global WCRP shortwave surface radiation budget dataset. Bull. Amer. Meteor. Soc., 76, 905922.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , B. R. Barkstrom, , E. F. Harrison, , R. B. Lee III, , G. L. Smith, , and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 1998: Clouds and the Earth’s Radiant Energy System (CERES): Algorithm overview. IEEE Trans. Geosci. Remote Sens., 36, 11271141, doi:10.1109/36.701020.

    • Search Google Scholar
    • Export Citation
  • Wild, M., , D. Folini, , C. Schär, , N. G. Loeb, , E. G. Dutton, , and G. König-Langlo, 2013: The global energy balance from a surface perspective. Climate Dyn., 40, 31073134, doi:10.1007/s00382-012-1569-8.

    • Search Google Scholar
    • Export Citation
  • Wong, T., , P. W. Stackhouse, , D. P. Kratz, , P. Sawaengphokhai, , A. C. Wilber, , and N. G. Loeb, 2012: Earth radiation budget at top-of-atmosphere [in “State of the Climate in 2012”]. Bull. Amer. Meteor. Soc., 93 (7), S38S40.

    • Search Google Scholar
    • Export Citation
  • Yang, S. K., , S. Zhou, , and A. J. Miller, cited 2012: SMOBA: A 3-dimensional daily ozone analysis using SBUV/2 and TOVS measurements. NWS/Climate Prediction Center Rep. [Available online at http://www.cpc.noaa.gov/products/stratosphere/SMOBA/smoba_doc.shtml.]

  • Yu, L., , P. W. Stackhouse, , and R. A. Weller, 2012: Global ocean surface heat fluxes [in “State of the Climate in 2012”]. Bull. Amer. Meteor. Soc., 93 (7), S65S68.

    • Search Google Scholar
    • Export Citation
  • Zelenka, A., , R. Perez, , R. Seals, , and D. Renne, 1999: Effective accuracy of satellite-derived hourly irradiances. Theor. Appl. Climatol., 62, 199207.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., , W. B. Rossow, , A. A. Lacis, , V. Oinas, , and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003jd004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 89 16
PDF Downloads 53 53 10

The Fast Longwave and Shortwave Flux (FLASHFlux) Data Product: Single-Scanner Footprint Fluxes

View More View Less
  • 1 Science Directorate, NASA Langley Research Center, Hampton, Virginia
  • | 2 Science Systems and Applications Inc., Hampton, Virginia
  • | 3 Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

The Clouds and the Earth’s Radiant Energy Systems (CERES) project utilizes radiometric measurements taken aboard the Terra and Aqua spacecrafts to derive the world-class data products needed for climate research. Achieving the exceptional fidelity of the CERES data products, however, requires a considerable amount of processing to assure quality and to verify accuracy and precision, which results in the CERES data being released more than 6 months after the satellite observations. For most climate studies such delays are of little consequence; however, there are a significant number of near–real time uses for CERES data products. The Fast Longwave and Shortwave Radiative Flux (FLASHFlux) data product was therefore developed to provide a rapid release version of the CERES results, which could be made available to the research and applications communities within 1 week of the satellite observations by exchanging some accuracy for speed. FLASHFlux has both achieved this 1-week processing objective and demonstrated the ability to provide remarkably good agreement when compared with the CERES data products for both the instantaneous single-scanner footprint (SSF) fluxes and the time- and space-averaged (TISA) fluxes. This paper describes the methods used to expedite the production of the FLASHFlux SSF fluxes by utilizing data from the CERES and Moderate Resolution Imaging Spectroradiometer instruments, as well as other meteorological sources. This paper also reports on the validation of the FLASHFlux SSF results against ground-truth measurements and the intercomparison of FLASHFlux and CERES SSF results. A complementary paper will discuss the production and validation of the FLASHFlux TISA fluxes.

Corresponding author address: Dr. David P. Kratz, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681-2199. E-mail: david.p.kratz@nasa.gov

Abstract

The Clouds and the Earth’s Radiant Energy Systems (CERES) project utilizes radiometric measurements taken aboard the Terra and Aqua spacecrafts to derive the world-class data products needed for climate research. Achieving the exceptional fidelity of the CERES data products, however, requires a considerable amount of processing to assure quality and to verify accuracy and precision, which results in the CERES data being released more than 6 months after the satellite observations. For most climate studies such delays are of little consequence; however, there are a significant number of near–real time uses for CERES data products. The Fast Longwave and Shortwave Radiative Flux (FLASHFlux) data product was therefore developed to provide a rapid release version of the CERES results, which could be made available to the research and applications communities within 1 week of the satellite observations by exchanging some accuracy for speed. FLASHFlux has both achieved this 1-week processing objective and demonstrated the ability to provide remarkably good agreement when compared with the CERES data products for both the instantaneous single-scanner footprint (SSF) fluxes and the time- and space-averaged (TISA) fluxes. This paper describes the methods used to expedite the production of the FLASHFlux SSF fluxes by utilizing data from the CERES and Moderate Resolution Imaging Spectroradiometer instruments, as well as other meteorological sources. This paper also reports on the validation of the FLASHFlux SSF results against ground-truth measurements and the intercomparison of FLASHFlux and CERES SSF results. A complementary paper will discuss the production and validation of the FLASHFlux TISA fluxes.

Corresponding author address: Dr. David P. Kratz, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681-2199. E-mail: david.p.kratz@nasa.gov
Save