• Barthold, F. E., , and D. A. R. Kristovich, 2011: Observations of the cross-lake cloud and snow evolution in a lake-effect snow event. Mon. Wea. Rev., 139, 23862398, doi:10.1175/MWR-D-10-05001.1.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., , and J. Delanoe, 2013: Synergies and complementarities of CloudSat-CALIPSO snow observations. J. Geophys. Res., 118, 721731, doi:10.1029/2012JD018092.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., , T. Augustynek, , S. Tanelli, , and P. Kollias, 2011: Multiple scattering identification in spaceborne W-band radar measurements of deep convective cores. J. Geophys. Res., 116, D19201, doi:10.1029/2011JD016142.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., , and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40, 345364, doi:10.1175/1520-0450(2001)040<0345:TSOMRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Botta, G., , K. Aydin, , and J. Verlinde, 2010: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: A new approach. IEEE Geosci. Remote Sens. Lett., 7, 572576, doi:10.1109/LGRS.2010.2041633.

    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., 1990: Snow particle size spectra in lake effect snows. J. Appl. Meteor.,29, 200–207, doi:10.1175/1520-0450(1990)029<0200:SPSSIL>2.0.CO;2.

  • Brandes, E. A., , K. Ikeda, , G. F. Zhang, , M. Schonhuber, , and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, doi:10.1175/JAM2489.1.

    • Search Google Scholar
    • Export Citation
  • Choi, G., , D. A. Robinson, , and S. Kang, 2010: Changing Northern Hemisphere snow seasons. J. Climate, 23, 53055310, doi:10.1175/2010JCLI3644.1.

    • Search Google Scholar
    • Export Citation
  • Evans, A. G., , J. D. Locatelli, , M. T. Stoelinga, , and P. V. Hobbs, 2005: The IMPROVE-1 storm of 1–2 February 2001. Part II: Cloud structures and the growth of precipitation. J. Atmos. Sci., 62, 34563473, doi:10.1175/JAS3547.1.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., , S. J. Walter, , G. L. Stephens, , and G. M. McFarquhar, 2002: Submillimeter-wave cloud ice radiometer: Simulations of retrieval algorithm performance. J. Geophys. Res., 107, 4028, doi:10.1029/2001JD000709.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , R. J. Hogan, , P. R. A. Brown, , A. J. Illingworth, , T. W. Choularton, , and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc.,131, 19972017, doi:10.1256/qj.04.134.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. Heymsfield, , and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365, doi:10.1175/2007JAS2344.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, G. L., , and J. D. Marwitz, 1984: An airborne comparison of three PMS probes. J. Atmos. Oceanic Technol., 1, 2227, doi:10.1175/1520-0426(1984)001<0022:AACOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., , and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Atmos. Sci., 15, 452461, doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., , and P. V. Hobbs, 1985: Size spectra of ice particles in frontal clouds: Correlations between spectrum shape and cloud conditions. Quart. J. Roy. Meteor. Soc.,111, 463477, doi:10.1002/qj.49711146810.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , P. Field, , and A. Bansemer, 2008: Exponential size distribution for snow. J. Atmos. Sci., 65, 40174031, doi:10.1175/2008JAS2583.1.

    • Search Google Scholar
    • Export Citation
  • Hiley, M. J., , M. S. Kulie, , and R. Bennartz, 2011: Uncertainty analysis for CloudSat snowfall retrievals. J. Appl. Meteor. Climatol., 50, 399418, doi:10.1175/2010JAMC2505.1.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and et al. , 2005: Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72, 251298, doi:10.1007/s10584-005-5352-2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., , L. Tian, , P. R. A. Brown, , C. D. Westbrook, , A. J. Heymsfield, , and J. D. Eastment, 2012: Radar backscattering by inhomogeneous precipitation particles. J. Appl. Meteor. Climatol., 51, 655671, doi:10.1175/JAMC-D-11-074.1.

    • Search Google Scholar
    • Export Citation
  • Hong, G., 2007: Radar backscattering properties of nonspherical ice crystals at 94 GHz. J. Geophys. Res., 112, D22203, doi:10.1029/2007JD008839.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., , H. Uyeda, , K. Iwanami, , and G. Liu, 2000: The response of 36- and 89-GHz microwave channels to convective snow clouds over ocean: Observation and modeling. J. Appl. Meteor., 39, 23222335, doi:10.1175/1520-0450(2000)039<2322:TROAGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., , M. S. Kulie, , C. O’Dell, , and R. Bennartz, 2007: Scattering of ice particles at microwave frequencies: A physically based parameterization. J. Appl. Meteor. Climatol, 46, 615633, doi:10.1175/JAM2483.1.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., , M. S. Kulie, , and R. Bennartz, 2011: A triple frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res., 116, D11203, doi:10.1029/2010JD015430.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., , and R. Bennartz, 2009: Utilizing spaceborne radars to retrieve dry snowfall. J. Appl. Meteor. Climatol., 46, 615633, doi:10.1175/2009JAMC2193.1.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., , R. Bennartz, , T. Greenwald, , Y. Chen, , and F. Wenig, 2010: Uncertainties in microwave optical properties of frozen precipitation: Implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, doi:10.1175/2010JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., , S. Kneifel, , D. Moisseev, , J. Tyynela, , S. Tanelli, , and T. Nousiainen, 2012: Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall. J. Geophys. Res., 117, D18205, doi:10.1029/2012JD017680.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7, 464479, doi:10.1175/1520-0426(1990)007<0464:AASOMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , and R. Meneghini, 2011: A study on the feasibility of dual-wavelength radar for identification of hydrometeor phases. J. Appl. Meteor. Climatol., 50, 449456, doi:10.1175/2010JAMC2499.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456, doi:10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008a: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, doi:10.1175/2008BAMS2486.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008b: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113, D00A09, doi:10.1029/2007JA012754.

    • Search Google Scholar
    • Export Citation
  • Liu, G., , and J. A. Curry, 2000: Determination of ice water path and mass median particle size using multichannel microwave measurements. J. Appl. Meteor., 39, 13181329, doi:10.1175/1520-0450(2000)039<1318:DOIWPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lobl, E. S., , K. Aonashi, , M. Murakami, , B. Griffith, , C. Kummerow, , G. Liu, , and T. Wilheit, 2007: Wakasa Bay: An AMSR precipitation validation campaign. Bull. Amer. Meteor. Soc., 88, 551558, doi:10.1175/BAMS-88-4-551.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., , and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., , S. Kneifel, , A. Battaglia, , M. Hagen, , L. Hirsch, , and S. Crewell, 2011: A multisensor approach toward a better understanding of snowfall microphysics: The TOSCA Project. Bull. Amer. Meteor. Soc., 92, 613628, doi:10.1175/2010BAMS2909.1.

    • Search Google Scholar
    • Export Citation
  • Luckman, A., , T. Murray, , R. de Lange, , and E. Hanna, 2006: Rapid and synchronous ice-dynamic changes in east Greenland. Geophys. Res. Lett., 33, L03503, doi:10.1029/2005GL025428.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2009: A method to estimate vertically integrated amounts of cloud ice and liquid mean rain rate in stratiform precipitation from radar and ancillary data. J. Appl. Meteor. Climatol., 48, 13981410, doi:10.1175/2009JAMC2106.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., , and A. Battaglia, 2009: Influence of multiple scattering on CloudSat measurements in snow: A model study. Geophys. Res. Lett., 36, doi:10.1029/2009GL038704.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., , A. J. Heymsfield, , and Z. Wang, 2005: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, doi:10.1029/2005GL023210.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., , G. G. Mace, , R. Marchand, , M. D. Shupe, , A. G. Hallar, , and I. B. McCubbin, 2012: Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008, doi:10.1175/JTECH-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1991: Evolution of snow-size spectra in cyclonic storms. Part II: Deviations from the exponential form. J. Atmos. Sci., 48, 18851899, doi:10.1175/1520-0469(1991)048<1885:EOSSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., , and W. A. Petersen, 2011: Incorporating ice crystal scattering databases in the simulation of millimeter wavelength radar reflectivity. J. Atmos. Oceanic Technol., 28, 337351, doi:10.1175/2010JTECHA1511.1.

    • Search Google Scholar
    • Export Citation
  • Noh, Y.-J., , G. Liu, , E.-K. Seo, , J. R. Wang, , and K. Aonashi, 2006: Development of a snowfall retrieval algorithm at high microwave frequencies. J. Geophys. Res., 111, D22216, doi:10.1029/2005JD006826.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., , and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, doi:10.1175/2009JAS3146.1.

    • Search Google Scholar
    • Export Citation
  • Sadowy, G. A., and et al. , 1997: The NASA DC-8 Airborne Cloud Radar: Design and preliminary results. Proc. Int. Geoscience and Remote Sensing Symp., Singapore, IEEE, 1466–1469, doi:10.1109/IGARSS.1997.608896.

  • Sadowy, G. A., , A. C. Berkun, , W. Chun, , E. Im, , and S. L. Durden, 2003: Development of an advanced airborne precipitation radar. Microwave J., 46, 8498.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., , and B. T. Johnson, 2011: Surface and atmospheric contributions to passive microwave brightness temperatures for falling snow events. J. Geophys. Res., 116, D02213, doi:10.1029/2010JD014438.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., , E. Im, , S. L. Durden, , and J. P. Meagher, 2004a: Rainfall and snowfall observations by the airborne dual-frequency precipitation radar during the Wakasa Bay Experiment. Proc. Int. Geoscience and Remote Sensing Symp.,31953198, Anchorage, AK, IEEE, doi:10.1109/IGARSS.2004.1370380.

  • Tanelli, S., , J. P. Meagher, , S. L. Durden, , and E. Im, 2004b: Processing of high resolution, multiparametric radar data for the airborne dual-frequency precipitation radar (APR-2). Microwave Remote Sensing of the Atmosphere and Environment IV, G. Skofronick-Jackson and S. Uratsuka, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5654), doi:10.1117/12.579015.

  • Tanelli, S., , S. L. Durden, , and E. Im, 2006: Simultaneous measurements of Ku- and Ka-band sea surface cross sections by an airborne radar. IEEE Geosci. Remote Sens. Lett., 3, 359363, doi:10.1109/LGRS.2006.872929.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., , J. Leinonen, , D. Moisseev, , and T. Nousiainen, 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate and soft-spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Woods, C. P., , M. T. Stoelinga, , J. D. Locatelli, , and P. V. Hobbs, 2005: Microphysical processes and synergistic interaction between frontal and orographic forcing of precipitation during the 13 December 2001 IMPROVE-2 event over the Oregon Cascades. J. Atmos. Sci., 62, 34933519, doi:10.1175/JAS3550.1.

    • Search Google Scholar
    • Export Citation
  • Woods, C. P., , M. T. Stoelinga, , and J. D. Locatelli, 2008: Size spectra of snow particles measured in wintertime precipitation in the Pacific Northwest. J. Atmos. Sci., 65, 189205, doi:10.1175/2007JAS2243.1.

    • Search Google Scholar
    • Export Citation
  • Yoshida, Y., , S. Asano, , and K. Iwanami, 2006: Retrieval of microphysical properties of water, ice, and mixed-phase clouds using a triple-wavelength radar and microwave radiometer. J. Meteor. Soc. Japan, 84, 10051031, doi:10.2151/jmsj.84.1005.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 11
PDF Downloads 50 50 12

Triple-Frequency Radar Reflectivity Signatures of Snow: Observations and Comparisons with Theoretical Ice Particle Scattering Models

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin
  • | 2 Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

An observation-based study is presented that utilizes aircraft data from the 2003 Wakasa Bay Advanced Microwave Scanning Radiometer Precipitation Validation Campaign to assess recent advances in the modeling of microwave scattering properties of nonspherical ice particles in the atmosphere. Previous work has suggested that a triple-frequency (Ku–Ka–W band) reflectivity framework appears capable of identifying key microphysical properties of snow, potentially providing much-needed constraints on significant sources of uncertainty in current snowfall retrieval algorithms used for microwave remote sensing instruments. However, these results were based solely on a modeling framework. In contrast, this study considers the triple-frequency approach from an observational perspective using airborne radar observations from the Wakasa Bay field campaign. After accounting for several challenges with the observational dataset, such as beam mismatching and attenuation, observed dual-wavelength ratio results are presented that confirm both the utility of a multifrequency approach to snowfall retrieval and the validity of the unique signatures predicted by complex aggregate ice particle scattering models. This analysis provides valuable insight into the microphysics of frozen precipitation that can in turn be applied to more readily available single- and dual-frequency systems, providing guidance for future precipitation retrieval algorithms.

Corresponding author address: Mark S. Kulie, Space Science and Engineering Center, University of Madison-Wisconsin, 1225 W. Dayton St., Madison, WI 53706. E-mail: mskulie@wisc.edu

Abstract

An observation-based study is presented that utilizes aircraft data from the 2003 Wakasa Bay Advanced Microwave Scanning Radiometer Precipitation Validation Campaign to assess recent advances in the modeling of microwave scattering properties of nonspherical ice particles in the atmosphere. Previous work has suggested that a triple-frequency (Ku–Ka–W band) reflectivity framework appears capable of identifying key microphysical properties of snow, potentially providing much-needed constraints on significant sources of uncertainty in current snowfall retrieval algorithms used for microwave remote sensing instruments. However, these results were based solely on a modeling framework. In contrast, this study considers the triple-frequency approach from an observational perspective using airborne radar observations from the Wakasa Bay field campaign. After accounting for several challenges with the observational dataset, such as beam mismatching and attenuation, observed dual-wavelength ratio results are presented that confirm both the utility of a multifrequency approach to snowfall retrieval and the validity of the unique signatures predicted by complex aggregate ice particle scattering models. This analysis provides valuable insight into the microphysics of frozen precipitation that can in turn be applied to more readily available single- and dual-frequency systems, providing guidance for future precipitation retrieval algorithms.

Corresponding author address: Mark S. Kulie, Space Science and Engineering Center, University of Madison-Wisconsin, 1225 W. Dayton St., Madison, WI 53706. E-mail: mskulie@wisc.edu
Save