• Amraoui, M., , C. C. DaCamara, , and J. M. C. Pereira, 2010: Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery. Remote Sens. Environ., 114, 10381052, doi:10.1016/j.rse.2009.12.019.

    • Search Google Scholar
    • Export Citation
  • Bradshaw, L. S., , R. E. Burgan, , J. D. Cohen, , and J. E. Deeming, 1983: The 1978 National Fire-Danger Rating System: Technical documentation. Intermountain Forest and Range Experiment Station General Tech. Rep. INT-169, USDA Forest Service, Ogden, UT, 44 pp.

  • Castro, N. J., cited 2006: Evolução das empresas de energia elétrica no Brasil em 1999 (Evolution of electrical energy companies in Brazil in 1999). Núcleo de Pesquisa em Economia, Tecnologias da Informação, Federal University of Rio de Janeiro. [Available online at http://www.nuca.ie.ufrj.br/livro/acompanhamento/neletronorte.htm.]

  • Chandler, C., and et al. , 1983: Fire in Forestry. Vol. 1, Forest Fire Behavior and Effects, John Wiley and Sons, 450 pp.

  • Dwyer, E., , S. Pinnock, , J. M. Gregoire, , and J. M. C. Pereira, 2000: Global spatial and temporal distribution of vegetation fire as determined from satellite observations. Int. J. Remote Sens., 21, 12891302, doi:10.1080/014311600210182.

    • Search Google Scholar
    • Export Citation
  • EMBRAPA, cited 2012: Monitoramento Orbital de Queimadas 2006 (Orbital monitoring of fires in 2006). [Available online at http://www.queimadas.cnpm.embrapa.br/bases/base_2006.htm.]

  • Fundação Instituto Brasileiro de Geografia e Estatística, 2004: Mapa de vegetação do Brasil: Escala 1:5.000.000 (Vegetation map of Brazil: 1:5 000 000 scale). IBGE, Rio de Janeiro, Brazil.

  • Gutman, G. G., 1991: Vegetation indices from AVHRR: An update and future prospects. Remote Sens. Environ., 35, 121136, doi:10.1016/0034-4257(91)90005-Q.

    • Search Google Scholar
    • Export Citation
  • INMET, 1992: Normais climatológicas: 1961–1990 (Climatological normals: 1961–1990). Departamento Nacional de Meteorologia, Secretaria Nacional de Irrigação, Ministério da Agricultura e Reforma Agrária, Brasília, Brazil, 84 pp.

  • Jones, D. I., , and G. K. Earp, 2001: Camera sightline pointing requirements for aerial inspection of overhead power lines. Electr. Power Syst. Res., 57, 7382, doi:10.1016/S0378-7796(01)00100-6.

    • Search Google Scholar
    • Export Citation
  • Kogan, F. N., 1995: Applications of vegetation index and brightness temperature for drought detection. Adv. Space Res., 15, 91100, doi:10.1016/0273-1177(95)00079-T.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, R. A., 2006: Extracting transmission lines from airborne LIDAR data. IEEE Geosci. Remote Sens. Lett., 3, 222226, doi:10.1109/LGRS.2005.863390.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., , Z. I. Janjić, , S. Nickovic, , D. Gavrilov, , and D. G. Deaven, 1988: The step-mountain coordinate: Model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon. Wea. Rev., 116, 14931518, doi:10.1175/1520-0493(1988)116<1493:TSMCMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miettinen, J., , and S. C. Liew, 2005: Connection between fire and land cover change in Southeast Asia: A remote sensing case study in Riau, Sumatra. Int. J. Remote Sens., 26, 11091126, doi:10.1080/01431160512331326756.

    • Search Google Scholar
    • Export Citation
  • Mouillot, F., , and C. B. Field, 2005: Fire history and the global carbon budget: A 1° × 1° fire history reconstruction for the 20th century. Global Change Biol., 11, 398420, doi:10.1111/j.1365-2486.2005.00920.x.

    • Search Google Scholar
    • Export Citation
  • Noble, I. R., , G. A. V. Bary, , and A. M. Gill, 1980: McArthur's fire-danger meters expressed as equations. Aust. J. Ecol., 5, 201203.

  • Nunes, J. R. S., , R. V. Soares, , and A. C. Batista, 2006: FMA+–Um novo índice de perigo de incêndios florestais para o estado do Paraná, Brasil (FMA+–A new forest fire hazard index for the state of Paraná, Brazil). Rev. Floresta, 36, 7591.

    • Search Google Scholar
    • Export Citation
  • Prins, E. M., , J. M. Feltz, , W. P. Menzel, , and D. E. Ward, 1998: An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J. Geophys. Res., 103, 31 82131 835, doi:10.1029/98JD01720.

    • Search Google Scholar
    • Export Citation
  • Sarabandi, K., , and M. Park, 2000: Extraction of power line maps from millimeter-wave polarimetric SAR images. IEEE Trans. Antennas Propag., 48, 18021809, doi:10.1109/8.901268.

    • Search Google Scholar
    • Export Citation
  • Sharples, J. J., , R. H. D. McRae, , R. O. Weber, , and A. M. Gill, 2009: A simple index for assessing fire danger rating. Environ. Model. Software, 24, 764774, doi:10.1016/j.envsoft.2008.11.004.

    • Search Google Scholar
    • Export Citation
  • Soares, R. V., 1972: Determinação de um índice de perigo de incêndio para a região centro paranaense, Brasil (Determination of a fire hazard index for a region in central Paraná, Brazil). M.S. dissertation, Instituto Interamericano de Ciencias Agrícolas da OEA, Turrialba, Costa Rica, 72 pp.

  • Soares, R. V., 1987: Comparação entre quatro índices na determinação do grau de perigo de incêndios no Município de Rio Branco do Sul–PR (Comparison of four indices in determining the degree of danger from fires in the city of Rio Branco do Sol–PR) Floresta,17, 31–35.

  • Stöckli, R., 2004: Modeling and observation of seasonal land–surface heat and water exchanges at local and catchment scales over Europe. Ph.D. thesis, Swiss Federal Institute of Technology, 155 pp.

  • Sukhnandan, A., , and D. Hoch, 2002: Fire induced flashovers of transmission lines: Theoretical models. Proc. Sixth Africon Conf. in Africa, Vol. 2, George, South Africa, IEEE, 617–622, doi:10.1109/AFRCON.2002.1159981.

  • Tanré, D., , B. N. Holben, , and Y. J. Kaufman, 1992: Atmospheric correction algorithm for NOAA-AVHRR products: Theory and applications. IEEE Trans. Geosci. Remote Sens., 30, 231248, doi:10.1109/36.134074.

    • Search Google Scholar
    • Export Citation
  • UNEP, 2002: Spreading like wildfire—Tropical forest fires in Latin America and the Caribbean: Prevention, assessment and early warning. U.N. Environment Programme, 16 pp. [Available online at http://www.unep.org/publications/search/pub_details_s.asp?ID=246.]

  • Verdon, D. C., , A. S. Kiem, , and S. W. Franks, 2004: Multi-decadal variability of forest fire risk—Eastern Australia. Int. J. Wildland Fire, 13, 165171, doi:10.1071/WF03034.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 91 91 26
PDF Downloads 64 64 22

A Fire-Risk-Breakdown System for Electrical Power Lines in the North of Brazil

View More View Less
  • 1 Department of Meteorology, Geosciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
  • | 2 Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, Brazil
© Get Permissions
Restricted access

Abstract

Anthropogenic or spontaneous fires (hotspots) are the main causes of unexpected breakdowns of electrical power lines in the northern region of Brazil. This research has tested, adapted, and implemented a preoperational system aiming to prevent electrical breakdowns for 382 km of electrical transmission lines in the state of Maranhão. The breakdown electrical fire risk is based on a combination of three variables: 1) the fire risk index, 2) the remotely sensed hotspot presence in the vicinity of electrical power lines, and 3) the vegetation stage. These variables are converted into Boolean variables, and their combination will classify the electrical fire risk as extreme, high, medium, low, or null. In regard to the system input variables, the fire risk index carries the highest representativeness in composition value of the breakdown electrical fire risk. Therefore, the results of two fire risk indices, calculated on the basis of the (a) Monte Alegre and (b) Angstrom methods, are presented and discussed. The validation of the fire risk indices is based on six categorical statistics (with the obtained final values also indicated in parentheses for the Monte Alegre and Angstrom methods, respectively): accuracy (0.91, 0.92), bias (1.05, 1.06), probability of detection (0.98, 0.99), false-alarm ratio (0.07, 0.07), probability of false detection (0.90, 0.80), and threat score (0.91, 0.92). The system presented here may be used as a tool within the electrical sector to prevent and respond to sudden electrical power line breakdowns.

Corresponding author address: Leonardo de Faria Peres, Dept. of Meteorology, Federal University of Rio de Janeiro, 21941-916 Rio de Janeiro, RJ, Brazil. E-mail: leonardo.peres@igeo.ufrj.br

Abstract

Anthropogenic or spontaneous fires (hotspots) are the main causes of unexpected breakdowns of electrical power lines in the northern region of Brazil. This research has tested, adapted, and implemented a preoperational system aiming to prevent electrical breakdowns for 382 km of electrical transmission lines in the state of Maranhão. The breakdown electrical fire risk is based on a combination of three variables: 1) the fire risk index, 2) the remotely sensed hotspot presence in the vicinity of electrical power lines, and 3) the vegetation stage. These variables are converted into Boolean variables, and their combination will classify the electrical fire risk as extreme, high, medium, low, or null. In regard to the system input variables, the fire risk index carries the highest representativeness in composition value of the breakdown electrical fire risk. Therefore, the results of two fire risk indices, calculated on the basis of the (a) Monte Alegre and (b) Angstrom methods, are presented and discussed. The validation of the fire risk indices is based on six categorical statistics (with the obtained final values also indicated in parentheses for the Monte Alegre and Angstrom methods, respectively): accuracy (0.91, 0.92), bias (1.05, 1.06), probability of detection (0.98, 0.99), false-alarm ratio (0.07, 0.07), probability of false detection (0.90, 0.80), and threat score (0.91, 0.92). The system presented here may be used as a tool within the electrical sector to prevent and respond to sudden electrical power line breakdowns.

Corresponding author address: Leonardo de Faria Peres, Dept. of Meteorology, Federal University of Rio de Janeiro, 21941-916 Rio de Janeiro, RJ, Brazil. E-mail: leonardo.peres@igeo.ufrj.br
Save