A Global Land Cover Climatology Using MODIS Data

Patrick D. Broxton Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Patrick D. Broxton in
Current site
Google Scholar
PubMed
Close
,
Xubin Zeng Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
,
Damien Sulla-Menashe Department of Earth and Environment, Boston University, Boston, Massachusetts

Search for other papers by Damien Sulla-Menashe in
Current site
Google Scholar
PubMed
Close
, and
Peter A. Troch Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona

Search for other papers by Peter A. Troch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global land cover data are widely used in weather, climate, and hydrometeorological models. The Collection 5.1 Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) product is found to have a substantial amount of interannual variability, with 40% of land pixels showing land cover change one or more times during 2001–10. This affects the global distribution of vegetation if any one year or many years of data are used, for example, to parameterize land processes in regional and global models. In this paper, a value-added global 0.5-km land cover climatology (a single representative map for 2001–10) is developed by weighting each land cover type by its corresponding confidence score for each year and using the highest-weighted land cover type in each pixel in the 2001–10 MODIS data. The climatology is validated by comparing it with the System for Terrestrial Ecosystem Parameterization database as well as additional pixels that are identified from the Google Earth proprietary software database. When compared with the data of any individual year, this climatology does not substantially alter the overall global frequencies of most land cover classes but does affect the global distribution of many land cover classes. In addition, it is validated as well as or better than the MODIS data for individual years. Also, it is based on higher-quality data and is validated better than the Global Land Cover Characteristics database, which is based on 1 year of Advanced Very High Resolution Radiometer data and represents a widely used first-generation global product.

Corresponding author address: Patrick Broxton, Dept. of Atmospheric Sciences, 1118 E. 4th St., The University of Arizona, Tucson, AZ 85721-0081. E-mail: broxtopd@email.arizona.edu

Abstract

Global land cover data are widely used in weather, climate, and hydrometeorological models. The Collection 5.1 Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) product is found to have a substantial amount of interannual variability, with 40% of land pixels showing land cover change one or more times during 2001–10. This affects the global distribution of vegetation if any one year or many years of data are used, for example, to parameterize land processes in regional and global models. In this paper, a value-added global 0.5-km land cover climatology (a single representative map for 2001–10) is developed by weighting each land cover type by its corresponding confidence score for each year and using the highest-weighted land cover type in each pixel in the 2001–10 MODIS data. The climatology is validated by comparing it with the System for Terrestrial Ecosystem Parameterization database as well as additional pixels that are identified from the Google Earth proprietary software database. When compared with the data of any individual year, this climatology does not substantially alter the overall global frequencies of most land cover classes but does affect the global distribution of many land cover classes. In addition, it is validated as well as or better than the MODIS data for individual years. Also, it is based on higher-quality data and is validated better than the Global Land Cover Characteristics database, which is based on 1 year of Advanced Very High Resolution Radiometer data and represents a widely used first-generation global product.

Corresponding author address: Patrick Broxton, Dept. of Atmospheric Sciences, 1118 E. 4th St., The University of Arizona, Tucson, AZ 85721-0081. E-mail: broxtopd@email.arizona.edu
Save
  • Bonan, G. B., 1996: A land surface model (LSM ver. 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, 155 pp., doi:10.5065/D6DF6P5X.

  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z.-L. Yang, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 31233149, doi:10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeFries, R. S., and J. R. G. Townshend, 1994: NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens., 15, 35673586, doi:10.1080/01431169408954345.

    • Search Google Scholar
    • Export Citation
  • DeFries, R. S., J. R. G. Townshend, and M. C. Hansen, 1999: Continuous fields of vegetation characteristics at the global scale at 1-km resolution. J. Geophys. Res., 104, 16 91116 923, doi:10.1029/1999JD900057.

    • Search Google Scholar
    • Export Citation
  • DeFries, R. S., M. C. Hansen, J. R. G. Townshend, A. C. Janetos, and T. R. Loveland, 2000: A new global 1-km dataset of percentage tree cover derived from remote sensing. Global Change Biol., 6, 247254, doi:10.1046/j.1365-2486.2000.00296.x.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-275-+STR, 82 pp., doi:10.5065/d6668B58.

  • ECMWF, 2013: IFS documentation—Cy38r1, operational implementation 19 June 2012, Part IV: Physical processes. ECMWF Tech. Doc., 189 pp. [Available online at http://old.ecmwf.int/research/ifsdocs/CY38r1/IFSPart4.pdf.]

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Freund, Y., and R. E. Schapire, 1997: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 55, 119139, doi:10.1006/jcss.1997.1504.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287302, doi:10.1016/S0034-4257(02)00078-0.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010: MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182, doi:10.1016/j.rse.2009.08.016.

    • Search Google Scholar
    • Export Citation
  • Friedman, J., T. Hastie, and R. Tibshirani, 2000: Additive logistic regression: A statistical view of boosting. Ann. Stat., 28, 337407, doi:10.1214/aos/1016218223.

    • Search Google Scholar
    • Export Citation
  • Giri, C., Z. Zhu, and B. Reed, 2005: A comparative analysis of Global Land Cover 2000 and MODIS land cover data sets. Remote Sens. Environ., 94, 123132, doi:10.1016/j.rse.2004.09.005.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., and B. Reed, 2000: A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. Int. J. Remote Sens., 21, 13651373, doi:10.1080/014311600210218.

    • Search Google Scholar
    • Export Citation
  • Herold, M., C. E. Woodcock, A. di Gregorio, P. Mayaux, A. S. Belward, J. Latham, and C. C. Schmullius, 2006: A joint initiative for harmonization and validation of land cover datasets. IEEE Trans. Geosci. Remote Sens., 44, 17191727, doi:10.1109/TGRS.2006.871219.

    • Search Google Scholar
    • Export Citation
  • Herold, M., P. Mayaux, C. E. Woodcock, A. Baccini, and C. Schmullius, 2008: Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ., 112, 25382556, doi:10.1016/j.rse.2007.11.013.

    • Search Google Scholar
    • Export Citation
  • Huete, A., K. Didan, K. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195213, doi:10.1016/S0034-4257(02)00096-2.

    • Search Google Scholar
    • Export Citation
  • Latifovic, R., and I. Olthof, 2004: Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data. Remote Sens. Environ., 90, 153165, doi:10.1016/j.rse.2003.11.016.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res., 112, G01023, doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2010: Investigating the climate impacts of global land cover change in the Community Climate System Model. Int. J. Climatol., 30, 20662087, doi:10.1002/joc.2061.

    • Search Google Scholar
    • Export Citation
  • Liang, L., and P. Gong, 2010: An assessment of MODIS Collection 5 global land cover product for biological conservation studies. Proc. 18th Int. Conf. on Geoinformatics, 2010 Beijing, China, IEEE, 1–6. [Available online at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5567991.]

  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330, doi:10.1080/014311600210191.

    • Search Google Scholar
    • Export Citation
  • McCallum, I., M. Obersteiner, S. Nilsson, and A. Shvidenko, 2006: A spatial comparison of four satellite derived 1 km global land cover datasets. Int. J. Appl. Earth Obs. Geoinf., 8, 246255, doi:10.1016/j.jag.2005.12.002.

    • Search Google Scholar
    • Export Citation
  • Muchoney, D., A. Strahler, J. Hodges, and J. LoCastro, 1999: The IGBP DISCover confidence sites and the system for terrestrial ecosystem parameterization: Tools for validating global land-cover data. Photogramm. Eng. Remote Sens., 65, 10611067.

    • Search Google Scholar
    • Export Citation
  • Quinlan, J. R., 1993: C4.5 Programs for Machine Learning. Morgan Kaufmann, 302 pp.

  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700–1992. Global Biogeochem. Cycles, 13, 9971027, doi:10.1029/1999GB900046.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83, 135148, doi:10.1016/S0034-4257(02)00091-3.

    • Search Google Scholar
    • Export Citation
  • Schapire, R. E., 1990: The strength of weak learnability. Mach. Learn., 5, 197227, doi:10.1007/BF00116037.

  • Schneider, A., M. A. Friedl, and D. Potere, 2009: A new map of global urban extent from MODIS satellite data. Environ. Res. Lett., 4, 044003, doi:10.1088/1748-9326/4/4/044003.

    • Search Google Scholar
    • Export Citation
  • Schneider, A., M. A. Friedl, and D. Potere, 2010: Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions.’ Remote Sens. Environ., 114, 17331746, doi:10.1016/j.rse.2010.03.003.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., C. J. Tucker, G. J. Collatz, S. O. Los, C. O. Justice, D. A. Dazlich, and D. A. Randall, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMS. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9, 706737, doi:10.1175/1520-0442(1996)009<0706:ARLSPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. H., J. D. Wickham, S. V. Stehman, and L. Yang, 2002: Impacts of patch size and land-cover heterogeneity on thematic image classification accuracy. Photogramm. Eng. Remote Sens., 68, 6570.

    • Search Google Scholar
    • Export Citation
  • Smith, J. H., S. V. Stehman, J. D. Wickham, and L. Yang, 2003: Effects of landscape characteristics on land-cover class accuracy. Remote Sens. Environ., 84, 342349, doi:10.1016/S0034-4257(02)00126-8.

    • Search Google Scholar
    • Export Citation
  • Sulla-Menashe, and Coauthors, 2011: Hierarchical mapping of northern Eurasian land cover using MODIS data. Remote Sens. Environ., 115, 392403, doi:10.1016/j.rse.2010.09.010.

    • Search Google Scholar
    • Export Citation
  • Townshend, J. R. G., 1992: Improved global data for land applications: A proposal for a new high resolution data set. Royal Swedish Academy of Sciences IGBP Rep. 20, 87 pp.

  • Wan, Z., Y. Zhang, Q. Zhang, and Z.-L. Li, 2002: Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 83, 163180, doi:10.1016/S0034-4257(02)00093-7.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., 2001: Global vegetation root distribution for land modeling. J. Hydrometeor., 2, 525530, doi:10.1175/1525-7541(2001)002<0525:GVRDFL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., R. E. Dickinson, A. Walker, M. Shaikh, R. DeFries, and J. Qi, 2000: Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteor., 39, 826839, doi:10.1175/1520-0450(2000)039<0826:DAEOGK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Shaikh, Y. Dai, R. E. Dickinson, and R. Myneni, 2002: Coupling of the Common Land Model to the NCAR Community Climate Model. J. Climate, 15, 18321854, doi:10.1175/1520-0442(2002)015<1832:COTCLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5763 1532 281
PDF Downloads 3010 683 70