Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

Christopher P. Loughner * Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christopher P. Loughner in
Current site
Google Scholar
PubMed
Close
,
Maria Tzortziou * Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Maria Tzortziou in
Current site
Google Scholar
PubMed
Close
,
Melanie Follette-Cook NASA Goddard Space Flight Center, Greenbelt, Maryland
Morgan State University, Baltimore, Maryland

Search for other papers by Melanie Follette-Cook in
Current site
Google Scholar
PubMed
Close
,
Kenneth E. Pickering NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Kenneth E. Pickering in
Current site
Google Scholar
PubMed
Close
,
Daniel Goldberg Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Daniel Goldberg in
Current site
Google Scholar
PubMed
Close
,
Chinmay Satam Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland

Search for other papers by Chinmay Satam in
Current site
Google Scholar
PubMed
Close
,
Andrew Weinheimer ** National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew Weinheimer in
Current site
Google Scholar
PubMed
Close
,
James H. Crawford NASA Langley Research Center, Hampton, Virginia

Search for other papers by James H. Crawford in
Current site
Google Scholar
PubMed
Close
,
David J. Knapp ** National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David J. Knapp in
Current site
Google Scholar
PubMed
Close
,
Denise D. Montzka ** National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Denise D. Montzka in
Current site
Google Scholar
PubMed
Close
,
Glenn S. Diskin NASA Langley Research Center, Hampton, Virginia

Search for other papers by Glenn S. Diskin in
Current site
Google Scholar
PubMed
Close
, and
Russell R. Dickerson Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Russell R. Dickerson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Christopher P. Loughner, Earth System Science Interdisciplinary Center, NASA/GSFC Code 614, Greenbelt, MD 20771. E-mail: christopher.p.loughner@nasa.gov

Abstract

Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Christopher P. Loughner, Earth System Science Interdisciplinary Center, NASA/GSFC Code 614, Greenbelt, MD 20771. E-mail: christopher.p.loughner@nasa.gov
Save
  • Allen, D. J., K. E. Pickering, R. W. Pinder, B. H. Henderson, K. W. Appel, and A. Prados, 2012: Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model. Atmos. Chem. Phys., 12, 1737–1758, doi:10.5194/acp-12-1737-2012.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., and Coauthors, 2004: Coastal boundary layer influence on pollutant transport in New England. J. Appl. Meteor., 43, 1425–1437, doi:10.1175/JAM2148.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 2005: A bad air day in Houston. Bull. Amer. Meteor. Soc., 86, 657–669, doi:10.1175/BAMS-86-5-657.

  • Booker, F., and Coauthors, 2009: The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol., 51, 337–351, doi:10.1111/j.1744-7909.2008.00805.x.

    • Search Google Scholar
    • Export Citation
  • Boucouvala, D., and R. Bornstein, 2003: Analysis of transport patterns during an SCOS97-NARSTO episode. Atmos. Environ., 37 (Suppl. 2), 73–94, doi:10.1016/S1352-2310(03)00383-2.

    • Search Google Scholar
    • Export Citation
  • Brioude, J., and Coauthors, 2013: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: Assessing anthropogenic emissions of CO, NOx, and CO2 and their impacts. Atmos. Chem. Phys., 13, 3661–3677, doi:10.5194/acp-13-3661-2013.

    • Search Google Scholar
    • Export Citation
  • Byun, D., and K. L. Schere, 2006: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev., 59, 51–77, doi:10.1115/1.2128636.

    • Search Google Scholar
    • Export Citation
  • Cooper, O. R., and Coauthors, 2010: Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature, 463, 344–348, doi:10.1038/nature08708.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., 2005: Cluster analysis of surface winds in Houston, Texas, and the impact of wind patterns on ozone. J. Appl. Meteor., 44, 1788–1806, doi:10.1175/JAM2320.1.

    • Search Google Scholar
    • Export Citation
  • de Gouw, J. A., and Coauthors, 2004: Chemical composition of air masses transported from Asia to the U.S. west coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures. J. Geophys. Res., 109, D23S20, doi:10.1029/2003JD004202.

    • Search Google Scholar
    • Export Citation
  • Dockery, D. W., C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, and F. E. Speizer, 1993: An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med., 329, 1753–1759, doi:10.1056/NEJM199312093292401.

    • Search Google Scholar
    • Export Citation
  • Eder, B., and S. Yu, 2006: A performance evaluation of the 2004 release of Models-3 CMAQ. Atmos. Environ., 40, 4811–4824, doi:10.1016/j.atmosenv.2005.08.045.

    • Search Google Scholar
    • Export Citation
  • Emmons, L. K., and Coauthors, 2010: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev., 3, 43–67, doi:10.5194/gmd-3-43-2010.

    • Search Google Scholar
    • Export Citation
  • EPA, 2011: Emissions inventory final rule TSD. U.S. Environmental Protection Agency Tech. Support Doc. EPA-H1-OAR-2009-0491, 112 pp. [Available online at ftp://ftp.epa.gov/EmisInventory/2005v4_2/transportrulefinal_eitsd_28jun2011.pdf.]

  • EPA, 2012: User guide for MOVES2010b. U.S. Environmental Protection Agency Tech. Support Doc. EPA-420-B-12-001b, 202 pp. [Available online at http://www.epa.gov/otaq/models/moves/documents/420b12001b.pdf.]

  • Evtyugina, M. G., T. Nunes, C. Pio, and C. S. Costa, 2006: Photochemical pollution under sea breeze conditions, during summer, at the Portuguese west coast. Atmos. Environ., 40, 6277–6293, doi:10.1016/j.atmosenv.2006.05.046.

    • Search Google Scholar
    • Export Citation
  • Eyth, A. M., and B. Brunk, 2005: New features in version 3 of the MIMS Spatial Allocator. CMAS Models-3 Users’ Conf., Chapel Hill, NC, University of North Carolina at Chapel Hill, Presentation 6.7, 23 pp. [Available online at http://cmascenter.org/conference/2005/ppt/6_7.pdf.]

  • Fehsenfeld, F. C., and Coauthors, 1987: A ground-based intercomparison of NO, NOx, and NOy measurement techniques. J. Geophys. Res., 92, 14 710–14 722, doi:10.1029/JD092iD12p14710.

    • Search Google Scholar
    • Export Citation
  • Fishman, J., V. Ramanathan, P. J. Crutzen, and S. C. Liu, 1979: Tropospheric ozone and climate. Nature, 282, 818–820, doi:10.1038/282818a0.

    • Search Google Scholar
    • Export Citation
  • Fishman, J., J. K. Creilson, P. A. Parker, E. A. Ainsworth, G. G. Vining, J. Szarka, F. L. Booker, and X. Xu, 2010: An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements. Atmos. Environ., 44, 2248–2256, doi:10.1016/j.atmosenv.2010.01.015.

    • Search Google Scholar
    • Export Citation
  • Galloway, J. N., J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B. Cowling, and B. J. Cosby, 2003: The nitrogen cascade. Bioscience, 53, 341–356, doi:10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gilliam, R. C., and J. E. Pleim, 2010: Performance assessment of new land surface and planetary boundary layer physics in the WRF-ARW. J. Appl. Meteor. Climatol., 49, 760–774, doi:10.1175/2009JAMC2126.1.

    • Search Google Scholar
    • Export Citation
  • Gilliam, R. C., J. M. Godowitch, and S. T. Rao, 2012: Improving the horizontal transport in the lower troposphere with four dimensional data assimilation. Atmos. Environ., 53, 186–201, doi:10.1016/j.atmosenv.2011.10.064.

    • Search Google Scholar
    • Export Citation
  • Gilliland, A. B., C. Hogrefe, R. W. Pinder, J. M. Godowitch, K. L. Foley, and S. T. Rao, 2008: Dynamic evaluation of regional air quality models: Assessing changes in O3 stemming from changes in emissions and meteorology. Atmos. Environ., 42, 5110–5123, doi:10.1016/j.atmosenv.2008.02.018.

    • Search Google Scholar
    • Export Citation
  • Godowitch, J. M., G. A. Pouliot, and S. T. Rao, 2010: Assessing multi-year changes in modeled and observed urban NOx concentrations from a dynamic model evaluation perspective. Atmos. Environ., 44, 2894–2901, doi:10.1016/j.atmosenv.2010.04.040.

    • Search Google Scholar
    • Export Citation
  • Goldberg, D. L., C. P. Loughner, M. Tzortziou, J. W. Stehr, K. E. Pickering, L. T. Marufu, and R. R. Dickerson, 2014: Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: Observations and models from the DISCOVER-AQ and CBODAQ campaigns. Atmos. Environ., 84, 9–19, doi:10.1016/j.atmosenv.2013.11.008.

    • Search Google Scholar
    • Export Citation
  • Gonçalves, M., P. Jiménez-Guerrero, and J. M. Baldasano, 2009: Contribution of atmospheric processes affecting the dynamics of air pollution in south-western Europe during a typical summertime photochemical episode. Atmos. Chem. Phys., 9, 849–864, doi:10.5194/acp-9-849-2009.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., R. Knoche, S. E. Peckham, and S. A. McKeen, 2004: Online versus offline air quality modeling on cloud-resolving scales. Geophys. Res. Lett., 31, L16117, doi:10.1029/2004GL020175.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 6831–6864, doi:10.1029/96JD03436.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    • Search Google Scholar
    • Export Citation
  • Houyoux, M. R., and J. M. Vukovich, 1999: Updates to the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system and integration with Models-3. The Emissions Inventory: Regional Strategies for the Future, Raleigh, NC, Air and Waste Management Association, 11 pp. [Available online at http://www.ie.unc.edu/cempd/pub_files/awma99_smoke.pdf.]

  • Im, U., and Coauthors, 2010: Study of a winter PM episode in Istanbul using the high resolution WRF/CMAQ modeling system. Atmos. Environ., 44, 3085–3094, doi:10.1016/j.atmosenv.2010.05.036.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P., R. Parra, and J. M. Baldasano, 2005: Control of ozone precursors in a complex industrial terrain by using multiscale-nested air quality models with fine spatial resolution (1 km2). J. Air Waste Manage. Assoc., 55, 1085–1099, doi:10.1080/10473289.2005.10464709.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P., J. Lelieveld, and J. M. Baldasano, 2006: Multiscale modeling of air pollutants dynamics in the northwestern Mediterranean basin during a typical summertime episode. J. Geophys. Res., 111, D18306, doi:10.1029/2005JD006516.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P., R. Parra, and J. M. Baldasano, 2007: Influence of initial and boundary conditions for ozone modeling in very complex terrains: A case study in the northeastern Iberian Peninsula. Environ. Modell. Software, 22, 1294–1306, doi:10.1016/j.envsoft.2006.08.004.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 2913–2933, doi:10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 3987–4004, doi:10.1175/2008MWR2596.1.

    • Search Google Scholar
    • Export Citation
  • Lee, H. W., H.-J. Choi, S.-H. Lee, Y.-K. Kim, and W.-S. Jung, 2008: The impact of topography and urban building parameterization on the photochemical ozone concentration of Seoul, Korea. Atmos. Environ., 42, 4232–4246, doi:10.1016/j.atmosenv.2008.01.021.

    • Search Google Scholar
    • Export Citation
  • Loughner, C. P., D. J. Allen, K. E. Pickering, D.-L. Zhang, Y.-X. Shou, and R. R. Dickerson, 2011: Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on pollutant transport and transformation. Atmos. Environ., 45, 4060–4072, doi:10.1016/j.atmosenv.2011.04.003.

    • Search Google Scholar
    • Export Citation
  • Luke, W. T., R. R. Dickerson, W. F. Ryan, K. E. Pickering, and L. J. Nunnermacker, 1992: Tropospheric chemistry over the lower Great Plains of the United States 2. Trace gas profiles and distributions. J. Geophys. Res., 97, 20 647–20 670, doi:10.1029/92JD02127.

    • Search Google Scholar
    • Export Citation
  • Martins, D. K., R. M. Stauffer, A. M. Thompson, T. N. Knepp, and M. Pippin, 2012: Surface ozone at a coastal suburban site in 2009 and 2010: Relationships to chemical and meteorological processes. J. Geophys. Res., 117, D05306, doi:10.1029/2011JD016828.

    • Search Google Scholar
    • Export Citation
  • Moffat, A. S., 1998: Global nitrogen overload problem grows critical. Science, 279, 988–989, doi:10.1126/science.279.5353.988.

  • Morgan, C., and N. Owens, 2001: Benefits of water quality policies: The Chesapeake Bay. Ecol. Econ., 39, 271–284, doi:10.1016/S0921-8009(01)00212-9.

    • Search Google Scholar
    • Export Citation
  • Mudway, I. S., and F. J. Kelly, 2000: Ozone and the lung: A sensitive issue. Mol. Aspects Med., 21, 1–48, doi:10.1016/S0098-2997(00)00003-0.

    • Search Google Scholar
    • Export Citation
  • Mueller, S. F., E. M. Bailey, T. M. Cook, and Q. Mao, 2006: Treatment of clouds and the associated response of atmospheric sulfur in the Community Multiscale Air Quality (CMAQ) modeling system. Atmos. Environ., 40, 6804–6820, doi:10.1016/j.atmosenv.2006.05.069.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 1995: Understanding Marine Biodiversity. National Academies Press, 128 pp.

  • Ortega, S., M. R. Soler, M. Alarcón, and R. Arasa, 2009: MNEQA, an emissions model for photochemical simulations. Atmos. Environ., 43, 3670–3681, doi:10.1016/j.atmosenv.2009.04.046.

    • Search Google Scholar
    • Export Citation
  • Parra, R., P. Jiménez, and J. M. Baldasano, 2006: Development of the high spatial resolution EMICAT2000 emission model for air pollutants from the north-eastern Iberian Peninsula (Catalonia, Spain). Environ. Pollut., 140, 200–219, doi:10.1016/j.envpol.2005.07.021.

    • Search Google Scholar
    • Export Citation
  • Pérez, C., P. Jiménez, O. Jorba, M. Sicard, and J. M. Baldasano, 2006: Influence of the PBL scheme on high-resolution photochemical simulations in an urban coastal area over the western Mediterranean. Atmos. Environ., 40, 5274–5297, doi:10.1016/j.atmosenv.2006.04.039.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2006: A simple, efficient solution of flux–profile relationships in the atmospheric surface layer. J. Appl. Meteor. Climatol., 45, 341–347, doi:10.1175/JAM2339.1.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 1383–1395, doi:10.1175/JAM2539.1.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and J. S. Chang, 1992: A non-local closure model for vertical mixing in the convective boundary layer. Atmos. Environ., 26, 965–981, doi:10.1016/0960-1686(92)90028-J.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., A. Xiu, P. L. Finkelstein, and T. L. Otte, 2001: A coupled land-surface and dry deposition model and comparison to field measurements of surface heat, moisture, and ozone fluxes. Water Air Soil Pollut. Focus, 1, 243–252, doi:10.1023/A:1013123725860.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Y. Feng, 2009: Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmos. Environ., 43, 37–50, doi:10.1016/j.atmosenv.2008.09.063.

    • Search Google Scholar
    • Export Citation
  • Sachse, G. W., G. F. Hill, L. O. Wade, and M. G. Perry, 1987: Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique. J. Geophys. Res., 92, 2071–2081, doi:10.1029/JD092iD02p02071.

    • Search Google Scholar
    • Export Citation
  • Sachse, G. W., R. C. Harriss, J. Fishman, G. F. Hill, and D. R. Cahoon, 1988: Carbon monoxide over the Amazon basin during the 1985 dry season. J. Geophys. Res., 93, 1422–1430, doi:10.1029/JD093iD02p01422.

    • Search Google Scholar
    • Export Citation
  • Samet, J. M., F. Dominici, F. C. Curriero, I. Coursac, and S. L. Zeger, 2000: Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N. Engl. J. Med., 343, 1742–1749, doi:10.1056/NEJM200012143432401.

    • Search Google Scholar
    • Export Citation
  • Sanders, G. E., J. J. Colls, and A. G. Clark, 1992: Physiological changes in Phaseolus vulgaris in response to long-term ozone exposure. Ann. Bot., 69, 123–133.

    • Search Google Scholar
    • Export Citation
  • San José, R., J. L. Pérez, and R. M. González, 2007: An operational real-time air quality modelling system for industrial plants. Environ. Modell. Software, 22, 297–307, doi:10.1016/j.envsoft.2005.07.030.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., 2000: Radiative forcing of climate change. Space Sci. Rev., 94, 363–373, doi:10.1023/A:1026752230256.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Stauffer, R. M., and Coauthors, 2014: Bay breeze influence on surface ozone at Edgewood, MD during July 2011. J. Atmos. Chem., doi:10.1007/s10874-012-9241-6, in press.

    • Search Google Scholar
    • Export Citation
  • Steele, C. J., S. R. Dorling, R. von Glasow, and J. Bacon, 2013: Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields. Atmos. Chem. Phys., 13, 443–461, doi:10.5194/acp-13-443-2013.

    • Search Google Scholar
    • Export Citation
  • Stein, A. F., V. Isakov, J. Godowitch, and R. R. Draxler, 2007: A hybrid modeling approach to resolve pollutant concentrations in an urban area. Atmos. Environ., 41, 9410–9426, doi:10.1016/j.atmosenv.2007.09.004.

    • Search Google Scholar
    • Export Citation
  • Tzortziou, M., J. R. Herman, A. Cede, C. P. Loughner, N. Abuhassan, and S. Naik, 2014: Spatial and temporal variability of ozone and nitrogen dioxide over a major urban estuarine ecosystem. J. Atmos. Chem., doi:10.1007/s10874-013-9255-8, in press.

    • Search Google Scholar
    • Export Citation
  • Vukovich, J. M., and T. Pierce, 2002: The implementation of BEIS-3 within the SMOKE modeling framework. Proc. 11th Int. Emission Inventory Conf., Atlanta, GA, EPA, 7 pp. [Available online at http://www.epa.gov/ttn/chief/conference/ei11/modeling/vukovich.pdf.]

  • Wang, J., and Coauthors, 2013: Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze trade wind, typhoon, and topography. Atmos. Res., 122, 486–503, doi:10.1016/j.atmosres.2012.05.009.

    • Search Google Scholar
    • Export Citation
  • Wiedinmyer, C., S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi, J. J. Orlando, and A. J. Soja, 2011: The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev., 4, 625–641, doi:10.5194/gmd-4-625-2011.

    • Search Google Scholar
    • Export Citation
  • Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40, 192–209, doi:10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yarwood, G., S. Rao, M. Yocke, and G. Z. Whitten, 2005: Updates to the Carbon Bond Mechanism: CB05. Yocke and Company Final Rep. to the U.S. EPA RT-0400675, 161 pp. [Available online at http://www.camx.com/publ/pdfs/cb05_final_report_120805.pdf.]

  • Yu, S., and Coauthors, 2012: Comparative evaluation of the impact of WRF/NMM and WRF/ARW meteorology on CMAQ simulations for PM2.5 and its related precursors during the 2006 TexAQS/GoMACCS study. Atmos. Chem. Phys., 12, 4091–4106, doi:10.5194/acp-12-4091-2012.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., R. S. Sokhi, N. Kitwiroon, D. R. Middleton, and B. Fisher, 2008: Performance characteristics of MM5-SMOKE-CMAQ for a summer photochemical episode in southeast England, United Kingdom. Atmos. Environ., 42, 4870–4883, doi:10.1016/j.atmosenv.2008.02.051.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 624 202 13
PDF Downloads 412 116 7