The Dual Wavelength Ratio Knee: A Signature of Multiple Scattering in Airborne Ku–Ka Observations

Alessandro Battaglia Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom

Search for other papers by Alessandro Battaglia in
Current site
Google Scholar
PubMed
Close
,
Simone Tanelli Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Simone Tanelli in
Current site
Google Scholar
PubMed
Close
,
Gerald M. Heymsfield NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gerald M. Heymsfield in
Current site
Google Scholar
PubMed
Close
, and
Lin Tian NASA Goddard Space Flight Center, Greenbelt, and Morgan State University, Baltimore, Maryland

Search for other papers by Lin Tian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Deep convective systems observed by the High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E) field campaign in Oklahoma provide the first evidence of multiple-scattering effects simultaneously at Ku and Ka band. One feature is novel and noteworthy: often, in correspondence to shafts with strong convection and when moving from the top of the cloud downward, the dual wavelength ratio (DWR) first increases as usual in KuKa-band observations, but then it reaches a maximum and after that point it steadily decreases all the way to the surface, forming what will be hereinafter referred to as a knee. This DWR knee cannot be reproduced by single-scattering theory under almost any plausible cloud microphysical profile. On the other hand, it is explained straightforwardly with the help of multiple-scattering theory when simulations involving hail-bearing convective cores with large horizontal extents are performed. The DWR reduction in the lower troposphere (i.e., DWR increasing with altitude) is interpreted as the result of multiple-scattering pulse stretching caused by the highly diffusive hail layer positioned high up in the atmosphere, with Ka multiple scattering typically exceeding that occurring in the Ku channel. Since the effects of multiple scattering increase with increasing footprint size, if multiple-scattering effects are present in the aircraft measurements, they are likely to be more pronounced in the spaceborne dual-frequency Ku–Ka radar observations, envisaged for the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Mission, launched in February 2014. This notional study supports the idea that DWR knees will be observed by the GPM radar when overflying high-density ice shafts embedded in large convective systems and suggests that their explanation must not be sought in differential attenuation or differential Mie effects but via multiple-scattering effects.

Corresponding author address: Alessandro Battaglia, Dept. of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom. E-mail: ab474@le.ac.uk

Abstract

Deep convective systems observed by the High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E) field campaign in Oklahoma provide the first evidence of multiple-scattering effects simultaneously at Ku and Ka band. One feature is novel and noteworthy: often, in correspondence to shafts with strong convection and when moving from the top of the cloud downward, the dual wavelength ratio (DWR) first increases as usual in KuKa-band observations, but then it reaches a maximum and after that point it steadily decreases all the way to the surface, forming what will be hereinafter referred to as a knee. This DWR knee cannot be reproduced by single-scattering theory under almost any plausible cloud microphysical profile. On the other hand, it is explained straightforwardly with the help of multiple-scattering theory when simulations involving hail-bearing convective cores with large horizontal extents are performed. The DWR reduction in the lower troposphere (i.e., DWR increasing with altitude) is interpreted as the result of multiple-scattering pulse stretching caused by the highly diffusive hail layer positioned high up in the atmosphere, with Ka multiple scattering typically exceeding that occurring in the Ku channel. Since the effects of multiple scattering increase with increasing footprint size, if multiple-scattering effects are present in the aircraft measurements, they are likely to be more pronounced in the spaceborne dual-frequency Ku–Ka radar observations, envisaged for the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Mission, launched in February 2014. This notional study supports the idea that DWR knees will be observed by the GPM radar when overflying high-density ice shafts embedded in large convective systems and suggests that their explanation must not be sought in differential attenuation or differential Mie effects but via multiple-scattering effects.

Corresponding author address: Alessandro Battaglia, Dept. of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom. E-mail: ab474@le.ac.uk
Save
  • Battaglia, A., and C. Simmer, 2008: How does multiple scattering affect the spaceborne W-band radar measurements at ranges close to and crossing the sea-surface range? IEEE Trans. Geosci. Remote Sens., 46, 16441651, doi:10.1109/TGRS.2008.916085.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., and S. Tanelli, 2011: DOMUS: Doppler Multiple-Scattering simulator. IEEE Trans. Geosci. Remote Sens., 49, 442450, doi:10.1109/TGRS.2010.2052818.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., M. O. Ajewole, and C. Simmer, 2006a: Evaluation of radar multiple-scattering effects from a GPM perspective. Part I: Model description and validation. J. Appl. Meteor. Climatol., 45, 16341647, doi:10.1175/JAM2424.1.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., M. O. Ajewole, and C. Simmer, 2006b: Evaluation of radar multiple-scattering effects from a GPM perspective. Part II: Model results. J. Appl. Meteor. Climatol., 45, 16481664, doi:10.1175/JAM2425.1.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., M. O. Ajewole, and C. Simmer, 2007: Evaluation of radar multiple scattering effects in Cloudsat configuration. Atmos. Chem. Phys., 7, 17191730, doi:10.5194/acp-7-1719-2007.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., J. M. Haynes, T. L’Ecuyer, and C. Simmer, 2008: Identifying multiple-scattering affected profiles in CloudSat observations over the oceans. J. Geophys. Res., 113, D00A17, doi:10.1029/2008JD009960.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., S. Tanelli, S. Kobayashi, D. Zrnic, R. J. Hogan, and C. Simmer, 2010: Multiple-scattering in radar systems: A review. J. Quant. Spectrosc. Radiat. Transfer, 111, 917947, doi:10.1016/j.jqsrt.2009.11.024.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., T. Augustynek, S. Tanelli, and P. Kollias, 2011: Multiple scattering identification in spaceborne W-band radar measurements of deep convective cores. J. Geophys. Res., 116, D19201, doi:10.1029/2011JD016142.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., S. Tanelli, and R. Meneghini, 2012: Using surface classification to improve surface reference technique over land. Indian J. Radio Space Phys., 41, 403410. [Available online at http://nopr.niscair.res.in/handle/123456789/14748.]

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res.,114, D00A22, doi:10.1029/2008JD009973.

  • Heymsfield, G. M., L. Tian, L. Li, M. McLinden, and J. I. Cervantes, 2013: Airborne radar observations of severe hailstorms: Implications for future spaceborne radar. J. Appl. Meteor. Climatol.,52, 1851–1867, doi:10.1175/JAMC-D-12-0144.1.

  • Hogan, R. J., and A. Battaglia, 2008: Fast lidar and radar multiple-scattering models: Part II: Wide-angle scattering using the time-dependent two-stream approximation. J. Atmos. Sci., 65, 36363651, doi:10.1175/2008JAS2643.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc.,95,701722, doi:10.1175/BAMS-D-13-00164.1.

  • Kneifel, S., M. S. Kulie, and R. Bennartz, 2011: A triple-frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res., 116, D11203, doi:10.1029/2010JD015430.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., S. Tanelli, and E. Im, 2005: Second-order multiple-scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width. Radio Sci.,40, RS6015, doi:10.1029/2004RS003219.

  • Kobayashi, S., S. Ito, S. Tanelli, T. Oguchi, and E. Im, 2007: A time-dependent multiple scattering theory for a pulsed radar with a finite beam width. Radio Sci., 4, RS4001, doi:10.1029/2006RS003555.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20,489503, doi:10.1175/JCLI4023.1.

    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., 2012: A triple-moment bulk hail microphysics scheme to investigate the sensitivities of hail to aerosols. Ph.D. dissertation, Colorado State University, 418 pp. [Available online at http://hdl.handle.net/10217/67571.]

  • Luo, Z., G. Y. Liu, and G. L. Stephens, 2008: CloudSat adding new insight into tropical penetrating convection. Geophys. Res. Lett., 35, L19819, doi:10.1029/2008GL035330.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1993: Possibilities of cirrus particle sizing from dual-frequency radar measurements. J. Geophys. Res.,98, 20 675–20 683, doi:10.1029/93JD02335.

  • Matrosov, S. Y., A. J. Heymsfield, and Z. Wang, 2005: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, doi:10.1029/2005GL023210.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. Battaglia, and P. Rodriguez, 2008: Effects of multiple scattering on attenuation-based retrievals of stratiform rainfall from CloudSat. J. Atmos. Oceanic Technol., 25, 21992208, doi:10.1175/2008JTECHA1095.1.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and T. Kozu, 1990: Spaceborne Weather Radar.Artech House, 212 pp.

  • Meneghini, R., J. A. Jones, T. Iguchi, K. Okamoto, and J. Kwiatkowski, 2004: A hybrid surface reference technique and its application to the TRMM precipitation radar. J. Atmos. Oceanic Technol., 21, 16451658, doi:10.1175/JTECH1664.1.

    • Search Google Scholar
    • Export Citation
  • Mitrescu, C., T. L’Ecuyer, J. Haynes, S. Miller, and J. Turk, 2010: CloudSat precipitation profiling algorithm—Model description. J. Appl. Meteor. Climatol.,49, 991–1003, doi:10.1175/2009JAMC2181.1.

  • Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol.,50, 873–894, doi:10.1175/2010JAMC2363.1

  • Ryzhkov, A., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol.,52, 2849–2870, doi:10.1175/JAMC-D-13-073.1.

  • Takahashi, N., H. Hanado, and T. Iguchi, 2006: Estimation of path-integrated attenuation and its nonuniformity from TRMM/PR range profile data. IEEE Trans. Geosci. Remote Sens., 44, 32763283, doi:10.1109/TGRS.2006.876295.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, doi:10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., G. F. Sacco, S. L. Durden, and Z. S. Haddad, 2012: Impact of non-uniform beam filling on spaceborne cloud and precipitation radar retrieval algorithms. Remote Sensing of the Atmosphere, Clouds, and Precipitation IV, T. Hayasaki, K. Nakamura, and E. Im, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8523), 852308-1–852308-9, doi:10.1117/12.977375.

  • Tian, L., G. M. Heymsfield, and R. C. Srivastava, 2002: Measurements of attenuation with airborne and ground-based radar in convective storms over land and its microphysical implications. J. Appl. Meteor., 41, 716733, doi:10.1175/1520-0450(2002)041<0716:MOAWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 264 102 7
PDF Downloads 276 57 5